研究生: |
Nada Syifa Qolbiyah Nada Syifa Qolbiyah |
---|---|
論文名稱: |
應用於固態電壓器之三階半橋CLLC諧振轉換器 Three-Level Half-Bridge CLLC Resonant Converter in Solid-State Transformer Application |
指導教授: |
邱煌仁
Huang-Jen Chiu |
口試委員: |
邱煌仁
Huang-Jen Chiu 劉宇晨 Yu-Chen Liu 張佑丞 Yu Chen Chang |
學位類別: |
碩士 Master |
系所名稱: |
電資學院 - 電子工程系 Department of Electronic and Computer Engineering |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 英文 |
論文頁數: | 78 |
中文關鍵詞: | CLLC諧振轉換器 、固態變壓器 、三階電壓 、零電壓開關 |
外文關鍵詞: | CLLC resonant converter, solid-state transformer, three-level voltage, zero-voltage switching |
相關次數: | 點閱:1033 下載:88 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
三階半橋 CLLC 諧振轉換器被提出用於三級固態變壓器中的隔離級。該轉換器採用三階電路架構,將電源開關電壓應力降低到輸入和輸出電壓的一半,其中箝位二極體和箝位電容的組合實現了所有開關的零電壓開關條件,且在輸入和輸出串聯之電容的電壓不均勻時加快了穩態時間。本文採用的轉換器之等效電路模型是用基波近似方法推導出的,用於穩態分析和頻率特性觀察。最後,實現了一台CLLC 轉換器電路,以驗證設計和可行性。當輸入電壓為1000 V時,所提出的轉換器約在 1042 W 時具有 98.09% 的最高功率轉換效率。
The three-level half-bridge CLLC resonant converter is proposed as an isolation stage for connecting medium-voltage (MVDC) and low-voltage (LVDC) in a three-stage solid-state transformer application. The converter applies a three-level voltage configuration to diminish the switching device voltage stress halved of the input and output voltage. The combination of clamping diode and clamping capacitors realizes a zero-voltage switching (ZVS) condition for all of the switches and speed up the steady-state time when the voltage across the input and output capacitor is uneven. An equivalent circuit model of the proposed converter was derived with fundamental harmonic approximation (FHA) method for the steady-state analysis and frequency characteristic observation. Finally, a CLLC converter prototype was developed to verify the design and performance expediency. The proposed converter possesses the highest power conversion efficiency of 98.09% at 1042 W for 1000 V input voltage.
References
[1] S. Madhusoodhanan et al., "Solid-State Transformer and MV Grid Tie Applications Enabled by 15 kV SiC IGBTs and 10 kV SiC MOSFETs Based Multi-level Converters," IEEE Trans. Ind. Appl., vol. 51, no. 4, pp. 3343–3360, 2015.
[2] S. Ouyang, J. Liu, Y. Yang, X. Chen, S. Song, and H. Wu, "DC Voltage Control Strategy of Three-Terminal Medium-Voltage Power Electronic Transformer-Based Soft Normally Open Points," IEEE Trans. Ind. Electron., vol. 67, no. 5, pp. 3684–3695, 2020.
[3] S. Falcones, R. Ayyanar, S. Member, and X. Mao, "A DC-DC Multiport-Converter-Based Solid-State Transformer Integrating Distributed Generation and Storage," IEEE Trans. Power Electron., vol. 28, no. 5, pp. 2192–2203, 2013.
[4] J. Zhang, J. Liu, S. Zhong, J. Yang, N. Zhao, and T. Q. Zheng, "A Power Electronic Traction Transformer Configuration with Low-Voltage IGBTs for Onboard Traction Application," IEEE Trans. Power Electron., vol. 34, no. 9, pp. 8453–8467, 2019.
[5] M. G. Simoes et al., "A Comparison of Smart Grid Technologies and Progresses in Europe and The U.S.," IEEE Trans. Ind. Appl., vol. 48, no. 4, pp. 1154–1162, 2012.
[6] L. Zheng, R. P. Kandula, and D. Divan, "Soft-Switching Solid-State Transformer with Reduced Conduction Loss," IEEE Trans. Power Electron., vol. 36, no. 5, pp. 5236–5249, 2021.
[7] L. Heinemann and G. Mauthe, "The Universal Power Electronics Based Distribution Transformer, an Unified Approach," PESC Rec. - IEEE Annu. Power Electron. Spec. Conf., vol. 2, pp. 504–509, 2001.
[8] M. Leibl, G. Ortiz, and J. W. Kolar, "Design and Experimental Analysis of a Medium-Frequency Transformer for Solid-State Transformer Applications," IEEE J. Emerg. Sel. Top. Power Electron., vol. 5, no. 1, pp. 110–123, 2017.
[9] M. H. Ryu, H. S. Kim, J. W. Baek, H. G. Kim, and J. H. Jung, "Effective Test Bed of 380-V DC Distribution System Using Isolated Power Converters," IEEE Trans. Ind. Electron., vol. 62, no. 7, pp. 4525–4536, 2015.
[10] Z. U. Zahid, Z. M. Dalala, R. Chen, B. Chen, and J. S. Lai, "Design of Bidirectional DC-DC Resonant Converter for Vehicle-to-Grid (V2G) Applications," IEEE Trans. Transp. Electrif., vol. 1, no. 3, pp. 232–244, 2015.
[11] L. Xue, Z. Shen, D. Boroyevich, P. Mattavelli, and D. Diaz, "Dual Active Bridge-Based Battery Charger for Plug-in Hybrid Electric Vehicle with Charging Current Containing Low Frequency Ripple," IEEE Trans. Power Electron., vol. 30, no. 12, pp. 7299–7307, 2015.
[12] M. H. Kheraluwala, R. W. Gascoigne, D. M. Divan, and E. D. Baumann, "Performance Characterization of a High-Power Dual Active Bridge dc-to-dc Converter," IEEE Trans. Ind. Appl., vol. 28, no. 6, pp. 1294–1301, 1992.
[13] B. Zhao, Q. Song, W. Liu, and Y. Sun, "Overview of Dual-Active-Bridge Isolated Bidirectional DC-DC Converter for High-Frequency-Link Power-Conversion System," IEEE Trans. Power Electron., vol. 29, no. 8, pp. 4091–4106, 2014.
[14] P. He and A. Khaligh, "Comprehensive Analyses and Comparison of 1 kW Isolated DC-DC Converters for Bidirectional EV Charging Systems," IEEE Trans. Transp. Electrif., vol. 3, no. 1, pp. 147–156, 2017.
[15] W. Chen, P. Rong, and Z. Lu, "Snubberless Bidirectional DC-DC Converter with New CLLC Resonant Tank Featuring Minimized Switching Loss," IEEE Trans. Ind. Electron., vol. 57, no. 9, pp. 3075–3086, 2010.
[16] J. H. Jung, H. S. Kim, M. H. Ryu, and J. W. Baek, "Design Methodology of Bidirectional CLLC Resonant Converter for High-Frequency Isolation of DC Distribution Systems," IEEE Trans. Power Electron., vol. 28, no. 4, pp. 1741–1755, 2013.
[17] H. Higa, S. Takuma, K. Orikawa, and J. I. Itoh, "Dual Active Bridge DC-DC Converter using Both Full and Half-Bridge Topologies to Achieve High Efficiency for Wide Load," 2015 IEEE Energy Convers. Congr. Expo. ECCE 2015, pp. 6344–6351, 2015.
[18] R. Withanage and N. Shammas, "Series Connection of Insulated Gate Bipolar Transistors (IGBTs)," IEEE Trans. Power Electron., vol. 27, no. 4, pp. 2204–2212, 2012.
[19] J. F. Chen, J. N. Lin, and T. H. Ai, "The Techniques of the Serial and Paralleled IGBTs," IECON Proc. (Industrial Electron. Conf., vol. 2, pp. 999–1004, 1996.
[20] C. Abbate, G. Busatto, and F. Iannuzzo, "High-Voltage, High-Performance Switch Using Series-Connected IGBTs," IEEE Trans. Power Electron., vol. 25, no. 9, pp. 2450–2459, 2010.
[21] J. Saiz, M. Mermet, D. Frey, P. O. Jeannin, J. L. Schanen, and P. Muszicki, "Optimisation and integration of an active clamping circuit for IGBT series association," Conf. Rec. - IAS Annu. Meet. (IEEE Ind. Appl. Soc., vol. 2, no. C, pp. 1046–1051, 2001.
[22] K. Filsoof and P. W. Lehn, "A Bidirectional Modular Multilevel DC–DC Converter of Triangular Structure," in IEEE Transactions on Power Electronics, vol. 30, no. 1, pp. 54-64, Jan. 2015, doi: 10.1109/TPEL.2014.2307004.
[23] A. Nabae, I. Takahashi and H. Akagi, "A New Neutral-Point-Clamped PWM Inverter," in IEEE Transactions on Industry Applications, vol. IA-17, no. 5, pp. 518-523, Sept. 1981, doi: 10.1109/TIA.1981.4503992.
[24] Jih-Sheng Lai and Fang Zheng Peng, "Multilevel Converters-A New Breed of Power Converters," in IEEE Transactions on Industry Applications, vol. 32, no. 3, pp. 509-517, May-June 1996, doi: 10.1109/28.502161.