簡易檢索 / 詳目顯示

研究生: 詹岱嘉
Tai-Chia Chan
論文名稱: 利用電與光濾波器 減輕光纖系統中因色散引起的性能下降
Using Electrical and Optical Filters to Mitigate the Performance Degradation of an Optical Fiber System due to the Chromatic Dispersion
指導教授: 譚昌文
CHANG-WEN TAN
口試委員: 譚昌文
CHANG-WEN TAN
黃柏仁
PO-JEN HUANG
陳鴻興
HUNG-HSING CHEN
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 52
中文關鍵詞: 光纖通訊色散補償電濾波器光濾波器
外文關鍵詞: Optical Fiber, Chromatic Dispersion Compensation, Digital Filter, Optical Filter
相關次數: 點閱:835下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在光纖系統中傳播的多色光會經歷色散,隨著多色光在光纖中傳輸距離和傳
    輸速率的增加,色散會導致光纖系統性能嚴重下降。在本論文中,提出了兩種不
    同類型的方法,分別為電和光補償方法,以減輕由於色散引起的系統性能下降。
    對於電補償法,SJ Savory 的方法用於設計各種階數的電數位濾波器,9 階、17 階
    和 33 階的不同與系統的傳輸速率和光纖長度有關,以補償光纖時域中的色散。
    對於光補償方法,採用不同類型的光濾波器,即基於馬克-詹德干涉儀的晶格濾波
    器和具有高反射表面的法布立-培若干涉儀,稱為 Gires-Tournois 干涉儀,都是
    用於執行色散補償。使用數位濾波器概念,可以在 OptiSystem 中的 Z 轉換中模擬
    光濾波器。從仿真結果可以發現,隨著數位濾波器階數的增加,補償效果沒有明
    顯變化。另一方面,光濾波器的補償效果顯著,而基於 MZI 的晶格濾波器效果更
    為突出。


    A polychromatic light wave, propagating in an optic fiber system experiences the
    chromatic dispersion. As the transmission traveling distance and the bit rate of the
    polychromatic lightwave in the optic fiber increase, chromatic dispersion can cause
    serious optic fiber system performance degradation. In this thesis, two different types of
    approaches, the electrical and optical ones, have been proposed to mitigate the system
    performance degradation due to the chromatic dispersion. For the electrical
    approaches, the S. J. Savory 's method is used to design electrical digital filters with
    various orders, the 9th, 17th and 33rd orders that are chosen according to the
    consideration of different transmission speeds of the system and lengths of optical fibers
    to compensate for the chromatic dispersion in the time domain. For the optical
    approaches, different kinds of optical filters, viz., the lattice filters based on the MachZehnder Interferometer and Fabry-Pérot interferometer with a highly reflective surface
    called Gires-Tournois interferometer are employed to perform the chromatic dispersion
    compensation. Using the digital filters concepts, the optical filters can be simulated in
    the OptiSystem in the domain of the Z-transform. From the simulation results, it is
    found that as the order of the digital filter increases, the compensation effect does not
    change significantly. On the other hand, the compensation result of the optical filters is
    significant while the effect of the lattice filter based on MZI is more outstanding.

    摘要 I ABSTRACT II 誌謝 III 圖表索引 IV 目 錄 VII 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 3 1.3 論文架構 5 第二章 光纖特性及色散補償技術 6 2.1光纖傳輸系統 6 2.1.1系統發送端 7 2.1.2系統接收端 8 2.2 光纖特性 9 2.2.1光纖構造 9 2.2.2 造成失真原因 10 2.3光纖中的色度色散 13 2.3.1 色散成因 13 2.3.2 色散的種類 13 2.3.3 對光纖之影響 15 2.4 電數位濾波器 16 2.4.1 操作原理 16 2.4.2 離散時間系統和z轉換(z-Transform) 17 2.5 光學濾波器 21 2.5.1 操作原理 21 2.5.2 Mach-Zehnder Interferometer 22 2.5.3 Gires-Tournois 干涉儀(Interferometer) 23 第三章 色散補償濾波器設計 25 3.1電數位濾波器補償算法 25 3.2光濾波器補償算法 27 3.2.1 基於數位概念之光濾波器 27 3.2.2 基於Mach-Zehnder Interferometer 之晶格濾波器 29 3.2.3 Gires-Tournois 干涉儀(Interferometer) 32 第四章 補償濾波器模擬結果分析 34 4.1模擬架構 34 4.1.1系統發送端架構 35 4.1.2系統接收端架構 36 4.2 電數位濾波器 37 4.2.1 時域(Time domain)分析 37 4.2.2 不同階數濾波器眼圖結果比較 41 4.3光濾波器 43 4.3.1時域分析 43 4.3.2不同類型濾波器眼圖比較 46 第五章 結論與未來展望 48 5.1結論 48 5.2未來展望 49 參考文獻 50

    [1] M. Shafi, et al., “5G: A Tutorial Overview of Standards Trials Challenges Deployment and Practice,” IEEE J. Sel. Areas Commun., vol. 35, July 2017, pp. 1201–1221.
    [2] Q. C. Li, et al., “5G Network Capacity: Key Elements and Technologies,” IEEE Veh. Technol. Mag, vol. 9, no. 1, pp. 71–78, Mar. 2014.
    [3] R. Yuen, X. N. Fernando, and S. Krishnan, “Radio over Multimode Fiber for Wireless Access,” IEEE Canadian Conference on Electrical and Computer Engineering, vol. 3, pp. 1715–1718, May 2004.
    [4] C. C. K. Chan, Optical Performance Monitoring: Advanced Techniques for next-Generation Photonic Networks, Academic Press, 2009.
    [5] N. Neumann, Signal Processing with Optical Delay Line Filters for High Bit Rate Transmission Systems, Jörg Vogt Verlag, 2011.
    [6] C. Madsen and J. H. Zhao, Optical Filter Design and Analysis: A Signal Processing Approach, JOHN WILEY & SONS, INC, 1999.
    [7] H. J. R. Dutton, Understanding Optical Communications, Prentice Hall Series in Networking, 1998.
    [8] J. Lefrerriere, G. Lietaert, R. Taws, and S. Wolszczak, Reference Guide to Fiber Optic Testing, Milpitas, CA, USA:JDS Uniphase, vol. 1, 2007.
    [9] S. V. Kartalopoulos, Optical Bit Error Rate: An Estimation Methodology, NJ, Hoboken:Willey, 2004.
    [10] S. Ramachandran, Fiber Based Dispersion Compensation, Springer, 2007.
    [11] I. S. Amiri and M. Ghasemi, Design and Development of Optical Dispersion Characterization Systems, Springer, 2019.
    [12] T. Hinamoto and W. S. Lu, Digital Filter Design and Realization, River Publishers, 2017.
    [13] S. Winder, Analog and Digital Filter Design, 2nd ed., The Netherlands, Amsterdam:Newnes, 2002.
    [14] S. J. Savory, et al., “Electronic Compensation of Chromatic Dispersion Using a Digital Coherent Receiver,” Optics Express, vol. 15, pp. 2120–2126, 2007.
    [15] K. D. Rao and M. N. S. Swamy, Digital Signal Processing, Springer, Singapore, 2018.
    [16] A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications, 6th ed., Oxford University Press, 2007.
    [17] K. Yu and O. Solgaard, “Tunable Chromatic Dispersion Compensators Using MEMS Gires-Tournois Interferometers,’’ Proc. 2002 IEEE/LEOS Int'l. Conf. Optical MEMS, pp. 181-182, 2002.
    [18] S. J. Savory, “Digital Coherent Optical Receivers: Algorithms and Subsystems,” IEEE J. Sel. Topics Quantum Electron., vol. 16, no. 5, pp. 1164-1179, Sep. 2010.
    [19] S. J. Savory, “Digital Filters for Coherent Optical Receivers,” Optics Express, vol. 16, pp. 804–817, 2008.
    [20] G. Lenz, B. Eggleton, and C. Madsen, “Optical filter dispersion in wdm systems: A review,” OSA Trends in Optics and Photonics, vol. 29, no. 1, pp. 246–248, 1999.
    [21] P. Pavithra and K. Karthika, “Dispersion and Dispersion Slope Compensation of an Optical Delay Line Filter (DLF) Based on Mach-Zehnder Interferometers,” International Journal of Applied Engineering Research, vol. 11, 3, pp. 2135–2139, 2016.
    [22] P. Kasthuri and P. Prakah, “Performance Analysis of Delay Line Filter using X-Coupler and Delay Line IIR Filter,” 2017 4th International Conference on Signal Processing, Communications and Networking (ICSCN -2017), March 16 – 18, 2017.
    [23] S. Guo, et al., “Design of Optical Notch Filter Based on Michelson Gires-Tournois Interferometer,” Passive Components and Fiber-Based Devices VII, 2013.
    [24] Z. Y. Zeng, et al., “Weighted Finite Impulse Response Filter for Chromatic Dispersion Equalization in Coherent Optical Fiber Communication Systems,” 2017 International Conference on Optical Instruments and Technology: Optoelectronic Devices and Optical Signal Processing, vol. 106170, 2018.
    [25] K. Yu and P. Yeh, “Tunable Optical Transversal Filters Based on a Gires–Tournois Interferometer with MEMS Phase Shifters,” IEEE J. Sel. Topics Quantum Electron., vol. 10, no. 3, pp. 588-597, May/Jun. 2004.
    [26] G. Lenz, et al., “Optical Delay Lines Based on Optical Filters,” IEEE J. Quantum Electron, vol. 37, no. 4, pp. 525–532, Apr. 2001.
    [27] B. B. Dingel, et al., “Thin Film-Based Gires–Tournois Resonator (GTR) as Quasi-Optical Analogue of the Thomas Rotation Angle Effect in Special Relativity,” Optics Communications, vol. 454, 2020.
    [28] M. Bohn, W. Rosenkranz, and P. Krummrich, “Adaptive Distortion Compensation With Integrated Optical Finite Impulse Response Filters in High Bitrate Optical Communication Systems,” IEEE J. Sel. Topics Quantum Electron., vol. 10, 2, pp. 273–280, 2004.
    [29] N. Neumann, et al., “General Design Rules for the Synthesis of Dispersion and Dispersion Slope Compensation FIR and IIR Filters With Reduced Complexity,” Journal of Lightwave Technology, vol. 25, no. 11, pp. 3555–3562, 2007.
    [30] S. C. Pei and C. C. Tseng, “IIR Multiple Notch Filter Design Based on Allpass Filter,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 44, no. 2, pp. 133–136, 1997.
    [31] C. K. Madsen, “General IIR Optical Filter Design for WDM Applications Using All-Pass Filters,” Journal of Lightwave Technology, vol. 18, no. 6, pp. 860 – 868, Jun. 2000.
    [32] C. K. Madsen and G. L. Lenz, “Optical All-Pass Filters for Phase Response Design with Applications for Dispersion Compensation,” IEEE Photon. Technol. Lett, vol. 10, no. 7, pp. 994–996, Jul. 1998.
    [33] S. Devra and G. Kaur, “Dispersion Compensation Using All Pass Filters in Optical Fibers,” International Conference on Information and Electronics Engineering, vol. 6, 2011.
    [34] A. B. Dheyab, et al., “Design and Analysis Gires-Tournois-Interferometer Mirrors,” TELKOMNIKA Indonesian Journal of Electrical Engineering, vol. 12, no. 10, pp. 7209–7213, Oct. 2014.
    [35] P. Pavithra, et al., “Analysis on Dispersion Compensation with Delay Line Filter (DLF) Using 2x2 Coupler,” 5 Th National Conference on Signal Processing Communications & VLSI Design, May 2013.
    [36] P. Morin, Gires-Tournois and Michelson-Gires-Tournois Interferometers with Sidewall Bragg Gratings in SOI, ProQuest Dissertations, 2016.
    [37] C. Peucheret, “Direct and External Modulation of Light,” Technical University of Denmark, Denmark, Nov. 2009.
    [38] E. M. Dowling and D. L. MacFarlane, “Lightwave Lattice Filters for Optically Multiplexed Communication Systems,” Journal of Lightwave Technology, vol. 12, no. 3, pp. 471 – 486, Mar. 1994.
    [39] V. Ribeiro, et al., “Chromatic-Dispersion-Monitoring Scheme Using a Mach–Zehnder Interferometer and Q-Factor Calculation,” Journal of Optical Communications and Networking, vol. 2, no. 1, pp. 10–19, 2010.
    [40] A. B. Williams and F. J. Taylor. Electronic Filter Design Handbook, 4th ed., The McGraw-Hill Companies, 2006.

    無法下載圖示 全文公開日期 2024/08/16 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 2026/08/16 (國家圖書館:臺灣博碩士論文系統)
    QR CODE