研究生: |
李宗倫 Tsung-Lun Li |
---|---|
論文名稱: |
基於數位孿生技術的智能儀表板系統:異質平台整合與人機協作應用研究 Intelligent Dashboard System Based on Digital Twin Technology: A Study on Heterogeneous Platform Integration and Human-Machine Collaboration |
指導教授: |
王孔政
Kung-Jeng Wang |
口試委員: |
王孔政
Kung-Jeng Wang 歐陽超 Chao Ou-Yang 蔣明晃 Ming-Huang Chiang 張秉宸 Ping-Chen Chang 何秀青 Mei Hsiu-Ching Ho |
學位類別: |
博士 Doctor |
系所名稱: |
管理學院 - 工業管理系 Department of Industrial Management |
論文出版年: | 2024 |
畢業學年度: | 113 |
語文別: | 英文 |
論文頁數: | 98 |
中文關鍵詞: | 儀表板系統 、數位孿生 、彈性組裝線 、人機協作 、智慧製造 |
外文關鍵詞: | dashboard system, digital twin, flexible assembly line, human-machine collaboration, intelligent manufacturing |
相關次數: | 點閱:656 下載:17 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究針對現有儀表板系統在人機協作應用中的技術限制,提出一套基於數位孿生技術的高度整合、智能化、靈活且具互動性的儀表板系統。該系統以彈性GPU卡組裝線為例,整合多個數位孿生模組,如操作員、螺絲機、機械手臂和自動光學檢測機,實現生產設備和環境的即時監控、參數調整與優化。本研究通過設計一套通訊協議,強化了儀表板系統的協調性與靈活性,使其能夠應對智慧製造高 複雜度之挑戰,並提升整體生產過程的效率。
本系統的創新之處在於不僅能監控生產設備,還能監控人員的工作狀態。運用JMobile軟體開發個性化介面,整合異質平台數據模組,使得不同品牌與型號的設備能夠在統一介面下進行高效操作與監控,如環境監控面板、工業型機械手臂、傳送帶、協作型機械手臂、光學檢測機以及網路攝影機。管理者可以依據自身需求進行配置,展示現場相關的數據,從而提升使用者的體驗與數據透明度。同時,透過系統實現操作人員生理狀態的監控,如心率和皮膚電導等指標,以判斷人員的疲勞和壓力程度,促進人機協作的深度整合,並提升系統的可擴展性,使其從設備管理擴展至人員管理。
個性化介面設計可根據用戶需求靈活配置,針對不同崗位或任務需求,監控相關的生理數據,即時反映人員狀態,便於管理者即時查看最相關的數據並做出決策。此介面還支持遠程監控,管理者無需抵達現場,即可掌握人員的工作狀況及生理反應,有助於即時處理可能出現的安全隱患,提升了工作效率、保障操作人員的安全,以及降低工安事故的風險。整體而言,此系統介面不僅優化了操作體驗,還提升系統在複雜工作場景下的應用能力,促進了智慧工廠的人機協作效率,進一步增強了系統在實際工業應用中的價值。
本研究通過整合數位孿生技術與人機協作,構建了一個可擴展的數位孿生儀表板系統框架,為智慧製造領域提供了一種創新的解決方案。該系統展示了其在工業自動化、智慧工廠管理及操作員安全保障等方面的廣泛應用潛力,為未來儀表板系統的發展奠定基礎。
This dissertation addresses the technical limitations of current dashboard systems in human-machine collaboration (HMC) applications by proposing a highly integrated, intelligent, flexible, and interactive dashboard system based on digital twin (DT) technology. Using a flexible GPU card assembly line as an example, the system incorporates multiple DT modules, including an operator, screw machine, robotic arm, and automatic optical inspection (AOI). These modules enable real-time monitoring, parameter adjustment, and optimization of production equipment and the surrounding environment. By establishing a set of communication protocols, the system enhances coordination and flexibility, enabling it to handle the complexities of intelligent manufacturing while improving overall production efficiency.
The key innovation of this system is its ability to monitor not only production equipment but also the working status of personnel. With JMobile software, personalized interfaces are developed, and data modules from heterogeneous platforms are integrated, allowing equipment from various brands and models to be managed and monitored under a unified interface, includes an environmental monitoring dashboard, industrial robotic arm, conveyor, collaborative robotic arm, AOI, and IP cameras. Managers can customize the system based on their specific needs and display relevant data on-site, improving user experience and ensuring data transparency. Additionally, the system tracks the operator's physiological status, such as heart rate and skin conductance, to assess fatigue and stress levels. This enhances the depth of HMC integration and extends system scalability, shifting its focus from equipment management to personnel management.
The personalized interface can be flexibly configured to meet user-specific requirements. Depending on the role position or job requirement, relevant physiological data is monitored in real-time, enabling managers to access the most pertinent information and make informed decisions on the spot. The interface also supports remote monitoring, allowing managers to assess personnel's operational and physiological status from afar. This capability helps mitigate safety risks in real-time, improves work efficiency, ensures operator safety, and reduces the risk of industrial accidents. Overall, the system's interface not only optimizes the user experience but also enhances the system's applicability in complex work environments, improving the efficiency of HMC in smart factories and increasing its practical value in industrial applications.
By integrating DT technology with HMC, this study develops a scalable DT dashboard system framework, offering an innovative solution for intelligent manufacturing. The system showcases significant potential for industrial automation, intelligent factory management, and operator safety, laying a strong foundation for the next generation of dashboard systems in the industry.
AboElHassan, A., Sakr, A. H., & Yacout, S. (2023). General purpose digital twin framework using digital shadow and distributed system concepts. Computers & Industrial Engineering, 183, 109534.
Al-Shargie, F. M., Tang, T. B., Badruddin, N., & Kiguchi, M. (2016). Mental stress quantification using EEG signals. In International conference for Innovation in Biomedical Engineering and Life Sciences: ICIBEL2015, 6-8 December 2015, Putrajaya, Malaysia 1 (pp. 15-19). Springer Singapore.
Alvarez, C., Salavati, S., Nussbaum, M., & Milrad, M. (2013). Collboard: Fostering new media literacies in the classroom through collaborative problem solving supported by digital pens and interactive whiteboards. Computers & Education, 63, 368-379.
Amato, A., Quarto, A., & Di Lecce, V. (2021). An application of cyber-physical system and multi-agent technology to demand-side management systems. Pattern Recognition Letters, 141, 23-31.
Angleraud, A., Ekrekli, A., Samarawickrama, K., Sharma, G., & Pieters, R. (2024). Sensor-based human–robot collaboration for industrial tasks. Robotics and Computer-Integrated Manufacturing, 86, 102663.
Antwi-Afari, M. F., Anwer, S., Umer, W., Mi, H. Y., Yu, Y., Moon, S., & Hossain, M. U. (2023). Machine learning-based identification and classification of physical fatigue levels: A novel method based on a wearable insole device. International Journal of Industrial Ergonomics, 93, 103404.
Arai, T., Kato, R., & Fujita, M. (2010). Assessment of operator stress induced by robot collaboration in assembly. CIRP annals, 59(1), 5-8.
Arsalan, A., & Majid, M. (2021). Human stress classification during public speaking using physiological signals. Computers in biology and medicine, 133, 104377.
Attaran, M., & Celik, B. G. (2023). Digital Twin: Benefits, use cases, challenges, and opportunities. Decision Analytics Journal, 6, 100165.
Bachechi, C., Po, L., & Rollo, F. (2022). Big Data Analytics and Visualization in Traffic Monitoring. Big Data Research, 27, 100292.
Bakliwal, K., Dhada, M. H., Palau, A. S., Parlikad, A. K., & Lad, B. K. (2018). A Multi Agent System architecture to implement Collaborative Learning for social industrial assets. IFAC-PapersOnLine, 51(11), 1237-1242.
Beate, B., Vera, H. (2017). Digital Twin as Enabler for an Innovative digital shopfloor management system in the ESB logistics learning factory at Reutlingen – University. Procedia Manufacturing, 9, 198-205.
Bischoff, L. L., Otto, A. K., Hold, C., & Wollesen, B. (2019). The effect of physical activity interventions on occupational stress for health personnel: A systematic review. International Journal of Nursing Studies, 97, 94-104.
Boukherroub, T., D'amours, S., & Rönnqvist, M. (2018). Sustainable forest management using decision theaters: Rethinking participatory planning. Journal of Cleaner Production, 179, 567-580.
Bruynseels, K., Santoni de Sio, F., & van den Hoven, J. (2018). Digital twins in health care: ethical implications of an emerging engineering paradigm. Frontiers in Genetics, 9, 31.
Chang, Y. H., Yang, H. H., & Hsu, W. J. (2019). Effects of work shifts on fatigue levels of air traffic controllers. Journal of Air Transport Management, 76, 1-9.
Chen, Z., & Huang, L. (2020). Digital twins for information-sharing in remanufacturing supply chain: a review. Energy, 119712.
Cho, D., Ham, J., Oh, J., Park, J., Kim, S., Lee, N. K., & Lee, B. (2017). Detection of stress levels from biosignals measured in virtual reality environments using a kernel-based extreme learning machine. Sensors, 17(10), 2435.
Deryabin, S. A., Temkin, I. O., & Zykov, S. V. (2020). About some issues of developing Digital Twins for the intelligent process control in quarries. Procedia Computer Science, 176, 3210-3216.
Didden, J. B., Dang, Q. V., & Adan, I. J. (2024). Enhancing stability and robustness in online machine shop scheduling: A multi-agent system and negotiation-based approach for handling machine downtime in industry 4.0. European Journal of Operational Research. 316(2), 569-583.
Ding, K., Chan, F. T., Zhang, X., Zhou, G., & Zhang, F. (2019). Defining a digital twin-based cyber-physical production system for autonomous manufacturing in smart shop floors. International Journal of Production Research, 1-20.
Domo (2024) https://www.domo.com/business-intelligence/visualizations-and-dashboar ds
Dyble, G., Tickle, A., & Collinson, C. (2014). From end user to provider: Making sense of becoming a peer support worker using interpretative phenomenological analysis. Journal of Public Mental Health, 13(2), 83-92.
Erkollar, A., & Oberer, B. (2016). Multidimensional dashboards for evaluating strategic brand management processes for multi-brand companies. Procedia-Social and Behavioral Sciences, 235, 505-513.
Exor (2023). Jmobile. Retrieved from https://www.exorint.com/en/software/jmobile
Fonseca, Í. A., Gaspar, H. M., de Mello, P. C., & Sasaki, H. A. U. (2022). A Standards-Based Digital Twin of an Experiment with a Scale Model Ship. Computer-Aided Design, 103191.
Franceschi, P., Mutti, S., Ottogalli, K., Rosquete, D., Borro, D., & Pedrocchi, N. (2022). A framework for cyber-physical production system management and digital twin feedback monitoring for fast failure recovery. International Journal of Computer Integrated Manufacturing, 35(6), 619-632.
Fu, R., Wang, H., & Zhao, W. (2016). Dynamic driver fatigue detection using hidden Markov model in real driving condition. Expert Systems with Applications, 63, 397-411.
Garg, A., Chaffin, D. B., & Herrin, G. D. (1978). Prediction of metabolic rates for manual materials handling jobs. American Industrial Hygiene Association Journal, 39(8), 661-674.
Gawron, V. J., French, J., & Funke, D. (2000). An overview of fatigue. Stress, workload, and fatigue, 581-595.
Geiger-Brown, J., Rogers, V. E., Trinkoff, A. M., Kane, R. L., Bausell, R. B., & Scharf, S. M. (2012). Sleep, sleepiness, fatigue, and performance of 12-hour-shift nurses. Chronobiology International, 29(2), 211-219.
Google (2024) https://cloud.google.com/looker/docs/dashboards
Graessler, I., & Poehler, A. (2018). Intelligent control of an assembly station by integration of a digital twin for employees into the decentralized control system. Procedia Manufacturing, 24, 185-189.
Grandi, F., Prati, E., Peruzzini, M., Pellicciari, M., & Campanella, C. E. (2022). Design of ergonomic dashboards for tractors and trucks: innovative method and tools. Journal of Industrial Information Integration, 25, 100304.
Greif, T., Stein, N., & Flath, C. M. (2020). Peeking into the void: Digital twins for construction site logistics. Computers in Industry, 121, 103264.
Grieves, M., & Vickers, J. (2017). Digital twin: Mitigating unpredictable, undesirable emergent behavior in complex systems. Transdisciplinary Perspectives on Complex Systems: New Findings and Approaches, 85-113.
Haag, S., & Anderl, R. (2018). Digital twin–proof of concept. Manufacturing Letters, 15, 64-66.
Hanshans, C., Amler, T., Zauner, J., & Bröll, L. (2023). Inducing and measuring acute stress in virtual reality: Evaluation of canonical physiological stress markers and measuring methods. Journal of Environmental Psychology, 102107.
Hjelle, S., Mikalef, P., Altwaijry, N., & Parida, V. (2024). Organizational decision making and analytics: An experimental study on dashboard visualizations. Information & Management, 61(6), 104011.
Hu, W., Almansoori, A., Kannan, P. K., Azarm, S., & Wang, Z. (2012). Corporate dashboards for integrated business and engineering decisions in oil refineries: An agent-based approach. Decision Support Systems, 52(3), 729-741.
Itaya, S., Ohori, F., Osuga, T., & Matsumura, T. (2023). Smart monitoring of wireless environments with real-time aggregation and analysis. Procedia Computer Science, 220, 86-93.
Ivanov, D. (2019). Disruption tails and revival policies: A simulation analysis of supply chain design and production-ordering systems in the recovery and post-disruption periods. Computers & Industrial Engineering, 127, 558-570.
Ivanov, D., & Dolgui, A. (2021). A digital supply chain twin for managing the disruption risks and resilience in the era of Industry 4.0. Production Planning & Control, 32(9), 775-788.
JMobile (2022) http://www.bhp.com.tw/jmobile.html
Jung, T., Shah, P., & Weyrich, M. (2018). Dynamic co-simulation of internet-of-things-components using a multi-agent-system. Procedia CIRP, 72, 874-879.
Järvelin-Pasanen, S., Sinikallio, S., & Tarvainen, M. P. (2018). Heart rate variability and occupational stress—systematic review. Industrial health, 56(6), 500-511.
Kamble, S. S., Gunasekaran, A., Parekh, H., Mani, V., Belhadi, A., & Sharma, R. (2022). Digital twin for sustainable manufacturing supply chains: Current trends, future perspectives, and an implementation framework. Technological Forecasting and Social Change, 176, 121448.
Kehyayan, V., Yasin, Y. M., Khraim, F., Masaba, A., & Alah, M. A. (2023). Fear and stress related to COVID-19 and associated factors among undergraduate nursing students in Qatar. Applied Nursing Research, 73, 151727.
Kerner, S., Gunasekar, S., Vedant, R. M., Krugh, M., & Mears, L. (2021). Parametrization of manual work in automotive assembly for wearable force sensing. Journal of Manufacturing Systems, 59, 686-700.
Khoshakhlagh, A. H., Yazdanirad, S., Kashani, M. M., Khatooni, E., Hatamnegad, Y., & Kabir, S. (2021). A Bayesian network based study on determining the relationship between job stress and safety climate factors in occurrence of accidents. BMC Public Health, 21, 1-12.
Kim, A. A., Sunitiyoso, Y., & Medal, L. A. (2019). Understanding facility management decision making for energy efficiency efforts for buildings at a higher education institution. Energy and Buildings, 199, 197-215.
Kumbhar, M., Ng, A. H., & Bandaru, S. (2023). A digital twin based framework for detection, diagnosis, and improvement of throughput bottlenecks. Journal of Manufacturing Systems, 66, 92-106.
Kumsap, C., Mungkung, V., Amatacheewa, I., & Thanasomboon, T. (2018). Conceptualization of Military’s Common Operation Picture for the Enhancement of Disaster Preparedness and Response during Emergency and Communication Blackout. Procedia Engineering, 212, 1241-1248.
Li, C., Zheng, P., Li, S., Pang, Y., & Lee, C. K. (2022). AR-assisted digital twin-enabled robot collaborative manufacturing system with human-in-the-loop. Robotics and Computer-Integrated Manufacturing, 76, 102321.
Lin, C. J., & Lukodono, R. P. (2022). Classification of mental workload in human-robot collaboration using machine learning based on physiological feedback. Journal of Manufacturing Systems, 65, 673-685.
Liu, J., Zhou, H., Liu, X., Tian, G., Wu, M., Cao, L., & Wang, W. (2019). Dynamic evaluation method of machining process planning based on digital twin. IEEE Access, 7, 19312-19323.
Liu, S., Zheng, P., & Bao, J. (2023). Digital Twin-based manufacturing system: a survey based on a novel reference model. Journal of Intelligent Manufacturing, 1-30.
Liu, Z., Wang, X., Cai, Y., Xu, W., Liu, Q., Zhou, Z., & Pham, D. T. (2020). Dynamic risk assessment and active response strategy for industrial human-robot collaboration. Computers & Industrial Engineering, 141, 106302.
Lombardi, D. A., Folkard, S., Willetts, J. L., & Smith, G. S. (2010). Daily sleep, weekly working hours, and risk of work-related injury: US National Health Interview Survey (2004–2008). Chronobiology international, 27(5), 1013-1030.
Lu, Y., Liu, C., Kevin, I., Wang, K., Huang, H., & Xu, X. (2020). Digital Twin-driven smart manufacturing: Connotation, reference model, applications and research issues. Robotics and Computer-Integrated Manufacturing, 61, 101837.
Luo, W., Hu, T., Zhang, C., & Wei, Y. (2019). Digital twin for CNC machine tool: modeling and using strategy. Journal of Ambient Intelligence and Humanized Computing, 10(3), 1129-1140.
Macías, J. A., & Borges, C. R. (2024). Monitoring and forecasting usability indicators: A business intelligence approach for leveraging user-centered evaluation data. Science of Computer Programming, 234, 103077.
Malik, A. A., & Brem, A. (2021). Digital twins for collaborative robots: A case study in human-robot interaction. Robotics and Computer-Integrated Manufacturing, 68, 102092.
Mansour, S., & Tremblay, D. G. (2016). Workload, generic and work–family specific social supports and job stress: Mediating role of work–family and family–work conflict. International Journal of Contemporary Hospitality Management, 28(8), 1778-1804.
Matheus, R., Janssen, M., & Maheshwari, D. (2020). Data science empowering the public: Data-driven dashboards for transparent and accountable decision-making in smart cities. Government Information Quarterly, 37(3), 101284.
Mathupriya, S., Banu, S. S., Sridhar, S., & Arthi, B. (2020). Digital twin technology on IoT, industries & other smart environments: A survey. Materials Today: Proceedings.
McDuff, D., Gontarek, S., & Picard, R. (2014, August). Remote measurement of cognitive stress via heart rate variability. In 2014 36th annual international conference of the IEEE engineering in medicine and biology society (pp. 2957-2960). IEEE.
Mehmood, I., Li, H., Qarout, Y., Umer, W., Anwer, S., Wu, H., ... & Antwi-Afari, M. F. (2023). Deep learning-based construction equipment operators’ mental fatigue classification using wearable EEG sensor data. Advanced Engineering Informatics, 56, 101978.
Mertes, J., Schellenberger, C., Yi, L., Schmitz, M., Glatt, M., Klar, M., ... & Aurich, J. C. (2024). Experimental evaluation of 5G performance based on a digital twin of a machine tool. CIRP Journal of Manufacturing Science and Technology, 55, 141-152.
Microsoft (2024) https://www.microsoft.com/zh-tw/power-platform/products/power-bi
Min, Q., Lu, Y., Liu, Z., Su, C., & Wang, B. (2019). Machine learning based digital twin framework for production optimization in petrochemical industry. International Journal of Information Management, 49, 502-519.
Mo, F., Querejeta, M. U., Hellewell, J., Rehman, H. U., Rezabal, M. I., Chaplin, J. C., ... & Ratchev, S. (2023). PLC orchestration automation to enhance human–machine integration in adaptive manufacturing systems. Journal of Manufacturing Systems, 71, 172-187.
Mo, F., Rehman, H. U., Monetti, F. M., Chaplin, J. C., Sanderson, D., Popov, A., ... & Ratchev, S. (2023). A framework for manufacturing system reconfiguration and optimisation utilising digital twins and modular artificial intelligence. Robotics and Computer-Integrated Manufacturing, 82, 102524.
Nwaogu, J. M., & Chan, A. P. (2021). Work-related stress, psychophysiological strain, and recovery among on-site construction personnel. Automation in Construction, 125, 103629.
O’Dwyer, E., Pan, I., Charlesworth, R., Butler, S., & Shah, N. (2020). Integration of an energy management tool and digital twin for coordination and control of multi-vector smart energy systems. Sustainable Cities and Society, 62, 102412.
Oh, H., Lee, H., Lee, I., & Lee, S. (2015). Cooperative content and radio resource allocation for visual information maximization in a digital signage scenario. Digital Signal Processing, 45, 24-35.
Paliga, M. (2022). Human–cobot interaction fluency and cobot operators’ job performance. The mediating role of work engagement: A survey. Robotics and Autonomous Systems, 155, 104191.
Pan, Y. H., Qu, T., Wu, N. Q., Khalgui, M., & Huang, G. Q. (2021). Digital twin based real-time production logistics synchronization system in a multi-level computing architecture. Journal of Manufacturing Systems, 58, 246-260.
Phillips-Wren, G., Daly, M., & Burstein, F. (2021). Reconciling business intelligence, analytics and decision support systems: More data, deeper insight. Decision Support Systems, 146, 113560.
Qi, Q., & Tao, F. (2018). Digital twin and big data towards smart manufacturing and industry 4.0: 360 degree comparison. IEEE Access, 6, 3585-3593.
Qlik (2024) https://help.qlik.com/zh-TW/sense/May2024/Content/Sense_Helpsites/Wh atsNew/What-is-new-QlikSense.htm
Rani, P., Sims, J., Brackin, R., & Sarkar, N. (2002). Online stress detection using psychophysiological signals for implicit human-robot cooperation. Robotica, 20(6), 673-685.
Reinking, J., Arnold, V., & Sutton, S. G. (2020). Synthesizing enterprise data to strategically align performance: The intentionality of strategy surrogation. International Journal of Accounting Information Systems, 36, 100444.
Reinking, J., Arnold, V., & Sutton, S. G. (2020). Synthesizing enterprise data through digital dashboards to strategically align performance: Why do operational managers use dashboards?. International Journal of Accounting Information Systems, 37, 100452.
Ren, Z., Fang, F., Yan, N., & Wu, Y. (2022). State of the art in defect detection based on machine vision. International Journal of Precision Engineering and Manufacturing-Green Technology, 9(2), 661-691.
Rustambekovich, Y. N., Tulkunovich, A. F., Fedorovich, A. M., & Ighatevich, I. A. (2017). Honeywell solutions for bumpless upgrade of TPS system and experion pks integration in zakum complex central control room, Abu Dhabi, UAE. Procedia computer science, 120, 625-632.
Salunkhe, O., Stahre, J., Romero, D., Li, D., & Johansson, B. (2023). Specifying task allocation in automotive wire harness assembly stations for Human-Robot Collaboration. Computers & Industrial Engineering, 184, 109572.
Schleich, B., Anwer, N., Mathieu, L., & Wartzack, S. (2017). Shaping the digital twin for design and production engineering. CIRP Annals, 66(1), 141-144.
Schroeder, G. N., Steinmetz, C., Pereira, C. E., & Espindola, D. B. (2016). Digital twin data modeling with automationml and a communication methodology for data exchange. IFAC-PapersOnLine, 49(30), 12-17.
Seo, J., Lee, S., & Seo, J. (2016). Simulation-based assessment of workers’ muscle fatigue and its impact on construction operations. Journal of Construction Engineering and Management, 142(11), 04016063.
Shrouf, F., & Miragliotta, G. (2015). Energy management based on Internet of Things: practices and framework for adoption in production management. Journal of Cleaner Production, 100, 235-246.
Smith, R. G. (1980). The contract net protocol: High-level communication and control in a distributed problem solver. IEEE Computer Architecture Letters, 29(12), 1104-1113.
Sorour, A., & Atkins, A. S. (2024). Big data challenge for monitoring quality in higher education institutions using business intelligence dashboards. Journal of Electronic Science and Technology, 100233.
Stark, R., Fresemann, C., & Lindow, K. (2019). Development and operation of Digital Twins for technical systems and services. CIRP Annals.
Sunners, M., Dawson, D., & Sydenham, P. (1994). Building an interactive blackboard framework. Knowledge-Based Systems, 7(3), 199-206.
Tableau (2024) https://www.tableau.com/zh-tw/products/tableau
Tao, F., Liu, W., Liu, J., Liu, X., Liu, Q., Qu, T., & Xiang, F. (2018a). Digital twin and its potential application exploration. International Journal of Computer Integrated Manufacturing, 24(1), 1-18.
Tao, F., Zhang, H., Liu, A., & Nee, A. Y. (2018b). Digital twin in industry: state-of-the-art. IEEE Transactions on Industrial Informatics, 15(4), 2405-2415.
Tao, F., Zhang, M., Cheng, J., & Qi, Q. (2017). Digital twin workshop: a new paradigm for future workshop. International Journal of Computer Integrated Manufacturing, 23(1), 1-9.
Tchana, Y., Ducellier, G., & Remy, S. (2019). Designing a unique digital twin for linear infrastructures lifecycle management. Procedia CIRP, 84, 545-549.
Tokola, H., Gröger, C., Järvenpää, E., & Niemi, E. (2016). Designing manufacturing dashboards on the basis of a Key Performance Indicator survey. Procedia CIRP, 57, 619-624.
Umer, W., Yu, Y., Antwi-Afari, M. F., Jue, L., Siddiqui, M. K., & Li, H. (2022). Heart rate variability based physical exertion monitoring for manual material handling tasks. International Journal of Industrial Ergonomics, 89, 103301.
Vahedi, A., Moghaddasi, H., Asadi, F., Hosseini, A., & Nazemi, E. (2022). Applications, features and key indicators for the development of Covid-19 dashboards: A systematic review study. Informatics in Medicine Unlocked, 100910.
Veeramani D. and Wang K. J. (2006) Design of bid construction mechanism for job flow time reduction in auction-based shop-floor control systems, International Journal of Advanced Manufacturing Technology, 28(5-6), 541–550.
Verdouw, C., Tekinerdogan, B., Beulens, A., & Wolfert, S. (2021). Digital twins in smart farming. Agricultural Systems, 189, 103046.
Vilarinho, S., Lopes, I., & Sousa, S. (2017). Design procedure to develop dashboards aimed at improving the performance of productive equipment and processes. Procedia Manufacturing, 11, 1634-1641.
Wang, K. J., & Lee, T. L. (2024). Designing a digital-twin based dashboard system for a flexible assembly line. Computers & Industrial Engineering, 196, 110491.
Wang, K. J., Lee Y. H., and Angelica S. (2021) Digital twin design for real-time monitoring – a case study of die cutting machine. International Journal of Production Research, 59(21), 6471-6485.
Wang, K. J., Lee, T. L., & Hsu, Y. (2020). Revolution on digital twin technology—a patent research approach. International Journal of Advanced Manufacturing Technology, 107(11), 4687-4704.
Wang, K., Yuan, P., Jan, M. A., Khan, F., Gadekallu, T. R., Kumari, S., ... & Pan, H. (2024). Digital twin-assisted service function chaining in multi-domain computing power networks with multi-agent reinforcement learning. Future Generation Computer Systems. DOI: 10.1016/j.future.2024.04.025
Wang, P., & Luo, M (2021). A digital twin-based big data virtual and real fusion learning reference framework supported by industrial internet towards smart manufacturing. Journal of Manufacturing Systems, 58, 16-32.
Weckx, S., Robyns, S., Baake, J., Kikken, E., De Geest, R., Birem, M., & Maes, D. (2022). A cloud-based digital twin for monitoring of an adaptive clamping mechanism used for high performance composite machining. Procedia Computer Science, 200, 227-236.
Willemse, C. J., & Van Erp, J. B. (2019). Social touch in human–robot interaction: Robot-initiated touches can induce positive responses without extensive prior bonding. International Journal of Social Robotics, 11(2), 285-304.
Wooldridge, M. J., & Jennings, N. R. (1995). Intelligent agents: Theory and practice. The Knowledge Engineering Review, 10(2), 115-152.
Wu, W., Lu, J., & Zhang, H. (2023). A fractal-theory-based multi-agent model of the cyber physical production system for customized products. Journal of Manufacturing Systems, 67, 143-154.
Xia, K., Sacco, C., Kirkpatrick, M., Saidy, C., Nguyen, L., Kircaliali, A., & Harik, R. (2021). A digital twin to train deep reinforcement learning agent for smart manufacturing plants: Environment, interfaces and intelligence. Journal of Manufacturing Systems, 58, 210-230.
Xie, Y., Lian, K., Liu, Q., Zhang, C., & Liu, H. (2021). Digital twin for cutting tool: Modeling, application and service strategy. Journal of Manufacturing Systems, 58, 305-312.
Xing, X., Zhong, B., Luo, H., Rose, T., Li, J., & Antwi-Afari, M. F. (2020). Effects of physical fatigue on the induction of mental fatigue of construction workers: A pilot study based on a neurophysiological approach. Automation in Construction, 120, 103381.
Xu, S., & Hall, N. G. (2021). Fatigue, personnel scheduling and operations: Review and research opportunities. European Journal of Operational Research, 295(3), 807-822.
Yang, G., Lin, Y., & Bhattacharya, P. (2010). A driver fatigue recognition model based on information fusion and dynamic Bayesian network. Information Sciences, 180(10), 1942-1954.
Ye, C., Yin, Z., Zhao, M., Tian, Y., & Sun, Z. (2022). Identification of mental fatigue levels in a language understanding task based on multi-domain EEG features and an ensemble convolutional neural network. Biomedical Signal Processing and Control, 72, 103360.
Yinghao, Z., Dan, Z., Qi, L., Yu, W., Xiaoying, W., Ao, F., & Lin, Z. (2023). A cross-sectional study of clinical emergency department nurses’ occupational stress, job involvement and team resilience. International Emergency Nursing, 69, 101299.
Yorks, D. M., Frothingham, C. A., & Schuenke, M. D. (2017). Effects of group fitness classes on stress and quality of life of medical students. Journal of Osteopathic Medicine, 117(11), e17-e25.
Yu, F., Somerville, D., & King, A. (2019). Exploring the impact of 12-hour shifts on nurse fatigue in intensive care units. Applied Nursing Research, 50, 151191.
Yung, M., Bigelow, P. L., Hastings, D. M., & Wells, R. P. (2014). Detecting within-and between-day manifestations of neuromuscular fatigue at work: an exploratory study. Ergonomics, 57(10), 1562-1573.
Zhang, G., Atasoy, H., & Vasarhelyi, M. A. (2022). Continuous monitoring with machine learning and interactive data visualization: An application to a healthcare payroll process. International Journal of Accounting Information Systems, 46, 100570.
Zhang, M., Sparer, E. H., Murphy, L. A., Dennerlein, J. T., Fang, D., Katz, J. N., & Caban‐Martinez, A. J. (2015). Development and validation of a fatigue assessment scale for US construction workers. American Journal of Industrial Medicine, 58(2), 220-228.
Zhang, M., Tao, F., & Nee, A. Y. C. (2021). Digital twin enhanced dynamic job-shop scheduling. Journal of Manufacturing Systems, 58, 146-156.
Zhang, Y., Zhu, H., Tang, D., Zhou, T., & Gui, Y. (2022). Dynamic job shop scheduling based on deep reinforcement learning for multi-agent manufacturing systems. Robotics and Computer-Integrated Manufacturing, 78, 102412.
Zimmermann, R., & Brandtner, P. (2024). From Data to Decisions: Optimizing Supply Chain Management with Machine Learning-Infused Dashboards. Procedia Computer Science, 237, 955-964.