簡易檢索 / 詳目顯示

研究生: 顏浚益
Jyun-Yi Yan
論文名稱: 負載自適型太陽能板特性曲線掃描器
Load Self-adaptive PV Panel Characteristic Curve Tracer
指導教授: 呂錦山
Ching-Shan Leu
口試委員: 林瑞禮
Ray-Lee Lin
楊宗銘
Chung-Ming Young
榮世良
Brady Jung
劉光華
Kwang-Hwa Liu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 72
中文關鍵詞: 最大功率追蹤器負載自適型責任週期調變之負載電阻升壓轉換器太陽能板特性曲線掃描器
外文關鍵詞: PV panel characteristic curve tracer, MPPT, load self-adaptive, duty-modulated load resistor, boost converter
相關次數: 點閱:291下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 太陽能光電板在受到部分遮蔽時,有熱點及輸出功率降低的問題。為減緩這些問題,便以反平行方向連接旁路二極體。然而,增加旁路二極體影響到太陽能光電板的發電特性,使之產生多個高峰。因此,在部分遮蔽下,使用傳統軟體型最大功率追蹤器(MPPT)來追蹤最大功率輸出點變得十分困難。電流-電壓特性曲線掃描器透過掃描多個可能的最大功率點(MPP)區域,可協助軟體型的 MPPT尋找真正的最大功率點。
    因此,電流-電壓曲線掃描器搭配軟體型的MPPT較受青睞。在此針對幾種電流-電壓曲線掃描器的優劣進行調查,並透過將磁滯自控責任週期調變之負載電阻 (DMLR)應用在升壓轉換器型電流-電壓曲線追跡器上,提出負載自適型太陽能板特性曲線掃描器。此掃描器有以下幾項優勢,如結構簡單、低實踐成本、及在Voc附近無掃描限制等。在此亦模擬且實作出一個120W 的太陽能光電板,以便實證所提出的曲線掃描器之可行性。


    Photovoltaic (PV) panels are subject to problems such as hot spots and reduced output power when operating in partially shaded conditions. Although bypass diodes are utilized to alleviate these problems, the diodes cause multiple-peak characteristics. Tracking the maximum output power point in partially shaded conditions is difficult using conventional software-based maximum power point tracking (MPPT) techniques. Current-voltage (I-V) curve tracers can assist software-based MPPT to track the true maximum power point (MPP) by scanning several potential MPP areas.
    Therefore, a software-based MPPT with an I-V curve tracer is a preferred solution. This study investigates the advantages and disadvantages of several I-V curve tracers and proposes a load self-adaptive PV panel characteristic curve tracer by applying a hysteretic self-controlled duty-modulated load resistor (DMLR) to a boost converter I-V curve tracer. Several advantages are achieved, such as simple structure, cost-efficient implementation, and no tracing limitation near the Voc. A circuit for a 120 W PV panel is simulated and implemented to verify the feasibility of the proposed curve tracer.

    Abstract I Acknowledgement II Table of Contents III List of Figures V List of Tables VIII Chapter 1 Introduction 1 1.1 General Background and Motivation 1 1.2 Objectives of the Thesis 12 1.3 Organization of the Thesis 13 Chapter 2 Conventional I-V Curve Tracers 14 2.1 Introduction 14 2.2 Categories of I-V Curve Tracers 14 2.3 Comparison of I-V Curve Tracers 21 2.4 Summary 28 Chapter 3 Load Self-adaptive PV Panel Characteristic Curve Tracer 29 3.1 Introduction 29 3.2 Proposed curve tracer 29 3.2.1 Boost Converter Stage 31 3.2.2 DMLR Stage 33 3.3 Design Approach 40 3.3.1 Hysteretic Bounds and Maximum Bus Voltage 40 3.3.2 Load Resistor and Boundary Power 41 3.3.3 Inductor 42 3.3.4 Input and Output Capacitors 43 3.3.5 MOSFETs and Diode 44 3.4 Simulation Results 45 3.5 Experimental Results 55 3.5.1 I-V Curve Measurement under Uniform Irradiance 56 3.5.2 I-V Curve Measurement under Partial Shading 61 3.6 Summary 64 Chapter 4 Conclusions and Future Research 65 4.1 Conclusions 65 4.2 Future Research 66 Reference 67 Vita 72

    [1] Seok-Ju Lee, Hae-Yong Park, Gyeong-Hun Kim, Hyo-Ryong Seo, M. H. Ali, Minwon Park, and In-keun Yu, “The experimental analysis of the grid-connected PV system applied by POS MPPT,” in Proceedings of IEEE ICEMS, 2007, pp. 1786-1791.
    [2] Raymond M. Hudson1, Michael R. Behnke, Rick West, Sigifredo Gonzalez and Jerry Ginn, “Design considerations for three-phase grid connected photovoltaic inverters,” in Proceedings of IEEE PVSC, 2002, pp. 1396-1401.
    [3] National Semiconductor (2011, May). SolarMagicTM ICs in Microinverter Applications [Online]. Available: http://www.ti.com/lit/an/snva471a/snva471a.pdf
    [4] Enecsys Limited. Micro-inverter Economics in Solar PV Installations. [Online]. Available: http://tindosolar.com.au/assets/pdfs/MicroInverterEconomics.pdf
    [5] John J. Bzura, “The ac panel: an overview and update on self-contained modular PV systems — summary of a panel session presentation,” in Proceedings of IEEE Power and Energy Society General Meeting, 2010, pp. 1-3.
    [6] Microchip Technology Inc. (2010) Grid-connected solar microinverter reference design using a dsPIC digital signal controller. [Online]. Available: http://ww1.microchip.com/downloads/en/appnotes/pv_appnotes.pdf
    [7] Y. J. Wang and P. C. Hsu, “Analytical modeling of partial shading and different orientation of photovoltaic panels,” IET Renewable Power Generation, vol. 4, no. 3, pp. 272-282, May 2010.
    [8] E. Durán, J. Galan, M. Sidrach-de-Cardona, and J. M. Andujar, “A new application of the buck-boost-derived converters to obtain the I-V curve of photovoltaic panels,” in Proceedings of IEEE PESC, June 2007, pp. 413-417.
    [9] A. Abete, P. Cane, C. Rizzitano, M. Tarantino, and R. Tomasini, “Performance testing procedures for photovoltaic panels in mismatching conditions,” in Proceedings of IEEE PVSC, 1991, pp. 807-811.
    [10] J. W. Bishop, “Computer simulation of the effect of electrical mismatches in photovoltaic interconnection circuits,” Solar Cells, vol. 25, no. 1, pp. 73-89, June 1988.
    [11] W. Herrmann, W. Wiesner, and W. Vaassen, “Hot spot investigations on PV panels – new concepts for a test standard and consequences for panel design with respect to bypass diodes,” in Proceedings of IEEE PVSC, 1997, pp. 1129-1132.
    [12] J. W. Bishop, “Micro-plasma breakdown and hot-spots in silicon solar cells,” Solar Cells, vol. 26, no. 4, pp. 335-349, Sept. 1989.
    [13] V. Quaschning, “Numerical simulation of current voltage characteristics of photovoltaic systems with shaded solar cells,” Solar Energy, vol. 56, no. 6, pp. 513-520, June 1996.
    [14] E. Molenbroek, D. W. Waddington, and K. A. Emmery, “Hot spot susceptibility and testing of PV panels,” in Proceedings of IEEE PVSC, 1991, pp. 547-552.
    [15] R. Ramaprabha and B. L. Mathur, “MATLAB based modelling to study the influence of shading on series connected SPVA,” in Proceedings of ICETET, 2009, pp. 30-34.
    [16] Atsushi Kajihara and Tetsumi Harakawa, “Model of photovoltaic cell circuits under partial shading,” in Proceedings of IEEE ICIT, 2005, pp. 866-870.
    [17] Chia Seet Chin, P. Neelakantan, Hou Pin Yoong, Soo Siang Yang, and K. T. K. Teo, “Maximum power point tracing for PV array under partial shaded conditions,” in Proceedings of IEEE CICSyN, 2011, pp. 72-77.
    [18] S. L. Brunton, C. W. Rowley, S. R. Kulkarni, and C. Clarkson, “Maximum power point tracing for photovoltaic optimization using extreme seeking,” in Proceedings of IEEE PVSC, 2009, pp. 13-16.
    [19] D. P. Hohm and M. E. Ropp, “Comparative study of maximum power point tracing algorithms using an experimental, programmable, maximum power point tracing Test Bed,” in Proceedings of IEEE PVSC, 2000, pp. 1699-1702.
    [20] S. Kazmi, H. Goto, O. Ichinokura, and Hai-Jiao Guo, “An improved and very efficient MPPT controller for PV systems subjected to rapidly varying atmospheric conditions and partial shading,” in Proceedings of IEEE AUPEC, 2009, pp. 1-6.
    [21] K. H. Hussein, I. Muta, T. Hoshino, and M. Osakada, “Maximum power point tracing: an algorithm for rapidly changing atmospheric conditions,” in Proceedings of IEE Generation, Transmission and Distribution, vol. 142, no. 1, pp. 59-64, Jan. 1995.
    [22] D. Sera, T. Kerekes, R. Teodorescu, and F. Blaabjerg, “Improved MPPT method for rapidly charging environmental conditions,” in Proceedings of IEEE ISIE, vol. 2, July 2006, pp. 1420-1425.
    [23] K. Kobayashi, I. Takano, and Y. Sawada, “A study on a two stage maximum power point tracing control of a photovoltaic system under partial shaded isolation conditions,” in Proceedings of IEEE PES, 2003, pp. 2612-2617.
    [24] Peng Lei, Yaoyu Li, and John E. Seem, “Sequential ESC-based global MPPT control for photovoltaic array with variable shading,” IEEE Transactions on Sustainable Energy, vol. 2, no. 3, pp. 348-358, July 2011.
    [25] Tat Luat Nguyen and Kay-Soon Low, “A global maximum power tracing scheme employing DIRECT search algorithm for photovoltaic systems,” IEEE Transactions on Industrial Electronics, vol. 57, no. 10, pp. 3456-3467, Oct. 2010.
    [26] R. Alonso, P. Ibaez, V. Martinez, E. Roman, and A. Sanz, “An innovative perturb, observe and check algorithm for partially shaded PV systems,” in Proceedings of IEEE European Conference on Power Electronics and Applications, 2009, pp. 1-8.
    [27] Hiren Patel and Vivek Agarwal, “Maximum power point tracing scheme for PV system operating under partially shaded conditions,” IEEE Transactions on Industrial Electronics, vol. 55, no. 4, pp. 1689-1698, April 2008.
    [28] E. Durán, M. Piliougine, M. Sidrach-de-Cardona, J. Galan, and J. M. Andujar, “Different methods to obtain the I-V curve of PV panels: a review,” in Proceedings of IEEE PVSC, 2008, pp. 1-6.
    [29] J. J. M. Ibirriaga, X. M. de Mendiluce Pena, A. Opritescu, D. Sera, and R. Teodorescu, “Low-cost, high flexibility I-V curve tracer for photovoltaic panels,” in Proceedings of IEEE OPTIM, 2010, pp. 1210-1215.
    [30] J. Munoz and E. Lorenzo, “Capacitive load based on IGBTs for on-site characterization of PV arrays,” Solar Energy, vol. 80, no. 11, pp. 1489-1497, Nov. 2006.
    [31] E. Durán, M. B. Ferrera, J. M. Andújar, and M. S. Mesa, “I-V and P-V curves measuring system for PV Panel based on dc-dc converters and portable graphical environment,” in Proceedings of IEEE ISIE, 2010, pp. 3323-3328.
    [32] E. Durán, M. Sidrach-de-Cardona, J. Galan, and J. M. Andujar, “Comparative analysis of buck-boost converters used to obtain I-V characteristic curves of photovoltaic panels,” in Proceedings of IEEE PESC, 2008, pp. 2036-2042.
    [33] E. Durán, J. M. Enrique, M. A. Bohorquez, M. Sidrach-de-Cardona, J. E. Carretero, and J. M. Andujar, ” A new application of the coupled-inductors SEPIC converter to obtain I-V and P-V curves of photovoltaic panels,” in Proceedings of IEEE European Conference on Power Electronics and Applications, 2005, pp. 1-10.
    [34] E. Durán, J. Galán, M. Sidrach-de-Cardona, M. B. Ferrera, and J. M. Andújar, “A new application of duty cycle sweep based on microcontroller to obtain the I-V characteristic curve of photovoltaic panels,” in Proceedings of IEEE ICIT, 2008, pp. 1-6.
    [35] Suntech Power Co. Ltd. (2005). STP060S-12/Sb monocrystalline silicon solar panel. [Online]. Available: http://www.energymatters.com.au/images/suntech/ STA060-12%20Solar%20panel.pdf
    [36] Microchip Technology Inc. (2007) Switch mode power supply (SMPS) topologies (Part I). [Online]. Available: http://ww1.microchip.com/downloads/en/ AppNotes/01114A.pdf
    [37] Catena Software Ltd. (2012) SIMPLIS reference manual. [Online]. Available: http://www.catena.uk.com/site/downloads/manuals.htm
    [38] EPARC, 電力電子學綜論, 1st ed. 台北市:全華圖書股份有限公司, 2007。
    [39] 梁適安, 交換式電源供應器之理論與實務設計,1st ed. 台北市: 全華圖書股份有限公司, 2006。

    QR CODE