簡易檢索 / 詳目顯示

研究生: 蔡淳如
Tsun-Ju Tsai
論文名稱: ABE發酵及利用沸石咪唑骨架材料吸附分離其中丁醇之研究
ABE Fermentation and Butanol Separation by Zeolitic Imidazolate Framework-8 (ZIF-8) Adsorption
指導教授: 李振綱
Cheng-Kang Lee
口試委員: 蔡伸隆
Shen-Long Tsai
楊佩芬
Pei-Fen Yang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 107
中文關鍵詞: 丁醇厭氧發酵沸石咪唑骨架材料分離
外文關鍵詞: butanol, Clostridium, Zeolitic Imidazolate Framework-8, Separation
相關次數: 點閱:614下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

近年來隨著石油危機和環境污染等問題的日益嚴重,人們積極尋找可以替代的能源。現今研究朝向將微生物發酵生產的醇類產物做為石油的替代能源。而這些醇類產物中又以低碳數的丁醇最具有成為替代能源的潛力。
生物丁醇通常是利用能夠會同時生產丙酮─丁醇─乙醇(Acetone─Butanol─Ethanol ,ABE)的微生物來發酵產生。但由於發酵液中丁醇濃度過低(1∼2 %),導致分離及純化需要耗費相當多能量,因此要從發酵液中分離回收丁醇具有相當大的挑戰。利用吸附劑吸附丁醇的方法可以在低耗能的狀態下有效分離丁醇,故本論文研究利用沸石咪唑骨架材料(ZIF-8)做為生物丁醇的吸附劑,探討其對丁醇水溶液及發酵液中之丁醇的吸附行為。
本研究先利用Clostridium acetobutylicum ATCC 824來發酵生產丁醇,在最佳的培養條件下進行發酵,可以得到10.8 g/L的丁醇,1.8 g/L的乙醇,3.72 g/L的丙酮和1.8 g/L的丁酸,並利用ZIF-8於此發酵液中進行吸附分離丁醇。
ZIF-8在模擬發酵液中的對丁醇的最大吸附量約為290 mg/g,但同時對也乙醇和丙酮具有微量的吸附能力。在真實發酵液中ZIF-8對丁醇的最大吸附量為208 mg/g,推測主要是丁酸鹽類會降低ZIF-8對丁醇的吸附量。
由於ZIF-8微米顆粒不易回收且在酸酸性環境下會崩解,因此本研究利用親醇性極佳的聚二甲基矽氧烷(PDMS)做為ZIF-8的載體,藉以改善此問題並製備可重複使用的丁醇吸附劑。


Bioalcohols such as ethanol and butanol are alternatives to fossil oil-based fuels. Especially biobutanol has many superior properties than that of bioethanol. Biobutanol is usually produced by acetone-butanol-ethanol (ABE) fermentation of bacterial strain Clostridium. However, its separation from the fermentation broth is still a huge challenge. Adsorption is one of the energy efficient techniques for butanol separation from dilute fermentation broths. In this study, a zeolitic imidazolate fragmentation-8 (ZIF-8) was used as an adsorbent for the separation of biobutanol from fermentation broths.
The maximum adsorption capacity of ZIF-8 for butanol was determined to be about 290 mg/g. Ethanol and acetone were observed to be adsorbed by ZIF-8 but with a small amount. Butanol of 10.8 g/L, ethanol of 1.8 g/L, acetone of 3.72 g/L and butyrate acid of 1.8 g/L were obtained in Clostridium acetobutylicum ATCC 824 fermentation broth.In fermentation broths. The maximum adsorption capacity of ZIF-8 for butanol from the fermentation broth was about 208 mg/g. The reduced butanol adsorption capacity was resulted from the presence of butyrate which will compete with butanol for adsorption on ZIF-8.
To facilitate its easy application for butanol adsorption, ZIF-8 was also mixed with polydimethylsiloxane (PDMS) to prepare a composite film on reusable butanol adsorbent. PDMS was employed because its butanol adsorption preference. Besides, PDMS not only acts as a support for ZIF-8 powder but also a barrier for uptaking butyrate from fermentation broth.

摘要 I Abstract III 致謝 V 目錄 VI 圖目錄 XI 表目錄 XV 第一章 緒論 1 1-1 前言 1 1-2 研究目的 2 第二章 理論基礎與文獻回顧 4 2-1 生質能源介紹 4 2-2 丁醇 6 2-2-1 丁醇基本介紹 6 2-2-2 丁醇生產方法 8 2-2-3 丁醇的應用 9 2-3 ABE發酵產丁醇 9 2-4 Clostrisium 12 2-5 丁醇的分離方法 14 2-5-1 氣提(gas stripping) 14 2-5-2 吸附(adsorption) 15 2-5-3 滲透蒸發(pervaporation) 17 2-5-4 液液萃取(liquid-liquid extraction) 19 2-5-5 不同分離技術對丁醇回收的比較 20 2-6 吸附法吸附丁醇 22 2-6-1 吸附現象 22 2-6-2 吸附種類 23 2-7 沸石咪唑骨架( Zeolitic Imidazolate Frameworks , ZIFs ) 24 2-7-1 有機金屬骨架結構簡介 24 2-7-2 沸石咪唑骨架簡介 25 2-7-3 沸石咪唑骨架應用 26 第三章 材料與方法 27 3-1 實驗流程 27 3-2 實驗材料 28 3-2-1 菌株 28 3-2-2 實驗藥品 28 3-3 實驗儀器 30 3-4 溶液的配製 32 3-5 實驗步驟與方法 34 3-5-1 菌種的培養與保存 34 3-5-2 搖瓶培養 34 3-5-3 發酵槽 35 3-5-4 菌體固定化載體之選擇 36 3-5-5 ZIF-8合成方法 39 3-5-6 PDMS複合膜合成法 40 3-5-7 吸附實驗 41 3-6 分析方法 43 第四章 結果與討論 46 4-1 微生物培養最適化 46 4-1-1 不同碳源濃度之影響 46 4-1-2 丁酸添加量對丁醇產量之影響 48 4-1-3 初始酸鹼值對丁醇產量的影響 50 4-2 發酵槽培養 52 4-3 菌體固定化 54 4-4沸石咪唑骨架(ZIF-8) 57 4-4-1 ZIF-8的材料性質 57 4-4-1-1 FE-SEM 57 4-4-1-2 TGA 59 4-4-1-3 FTIR 60 4-4-2 ZIF-8對不同物質的吸附 61 4-4-3 ZIF-8脫附實驗 63 4-4-4 ZIF-8在模擬發酵液中的吸附 64 4-4-5 ZIF-8在真實發酵液中的吸附 65 4-4-6 酸鹼值和丁酸鹽類對ZIF-8的吸附影響 66 4-5 ZIF-8/PDMS複合膜 68 4-5-1 ZIF-8/PDMS複合膜材料性質 69 4-5-1-1 FE-SEM 69 4-5-1-2 ZIF-8/PDMS複合膜熱穩定性分析 70 4-5-1-3 ATR-IR 71 4-5-1-4 接觸角分析 72 4-5-2 PDMS複合膜對ABE溶液的吸附效果 73 4-5-3 PDMS複合膜對真實發酵液的吸附效果 74 第五章 結論 76 附錄 77 附錄A 菌體乾菌重檢量線 77 附錄B 葡萄糖濃度檢量線 77 附錄C GC-TCD的氣體產物圖 78 附錄C GC的液體產物圖 79 參考文獻 83

Bahl, H., Andersch, W., & Gottschalk, G. (1982). Continuous production of acetone and butanol by Clostridium acetobutylicum in a two-stage phosphate limited chemostat. European journal of applied microbiology and biotechnology, 15, 5.
Bai, Y. X., Dong, L. L., Zhang, C. F., Gu, J., Sun, Y. P., Zhang, L., & Chen, H. L. (2013). ZIF-8 Filled Polydimethylsiloxane Membranes for Pervaporative Separation of n-Butanol from Aqueous Solution. Separation Science and Technology, 48(17), 2531-2539. Doi: 10.1080/01496395.2013.811424
Chen, K. C., Lee, S. C., Chin, S. C., & Houng, J. Y. (1998). Simultaneous carbon-nitrogen removal in wastewater using phosphorylated PVA-immobilized microorganisms. Enzyme and Microbial Technology, 23(5), 311-320. Doi: 10.1016/s0141-0229(98)00054-4
Cheng, C.-L., Che, P.-Y., Chen, B.-Y., Lee, W.-J., Chien, L.-J., & Chang, J.-S. (2012). High yield bio-butanol production by solvent-producing bacterial microflora. Bioresource Technology, 113, 58-64. Doi: 10.1016/j.biortech.2011.12.133
Chizallet, C., Lazare, S., Bazer-Bachi, D., Bonnier, F., Lecocq, V., Soyer, E., . . . Bats, N. (2010). Catalysis of Transesterification by a Nonfunctionalized Metal-Organic Framework: Acido-Basicity at the External Surface of ZIF-8 Probed by FTIR and ab Initio Calculations. Journal of the American Chemical Society, 132(35), 12365-12377. Doi: 10.1021/ja103365s
Dolejs, I., Krasnan, V., Stloukal, R., Rosenberg, M., & Rebros, M. (2014). Butanol production by immobilised Clostridium acetobutylicum in repeated batch, fed-batch, and continuous modes of fermentation. Bioresource Technology, 169, 723-730. Doi: 10.1016/j.biortech.2014.07.039
Ei-Zanati, E., Abdel-Hakim, E., El-Ardi, O., & Fahmy, M. (2006). Modeling and simulation of butanol separation from aqueous solutions using pervaporation. Journal of Membrane Science, 280(1-2), 278-283. Doi: 10.1016/j.memsci.2006.01.029
Ezeji, T., & Blaschek, H. P. (2008). Fermentation of dried distillers' grains and solubles (DDGS) hydrolysates to solvents and value-added products by solventogenic clostridia. Bioresource Technology, 99(12), 5232-5242. Doi: 10.1016/j.biortech.2007.09.032
Ezeji, T., Qureshi, N., & Blaschek, H. P. (2007). Butanol production from agricultural residues: Impact of degradation products on Clostridium beijerinckii growth and butanol fermentation. Biotechnology and Bioengineering, 97(6), 1460-1469. Doi: 10.1002/bit.21373
Ezeji, T. C., Qureshi, N., & Blaschek, H. P. (2004). Acetone butanol ethanol (ABE) production from concentrated substrate: reduction in substrate inhibition by fed-batch technique and product inhibition by gas stripping. Applied Microbiology and Biotechnology, 63(6), 653-658. Doi: 10.1007/s00253-003-1400-x
Fadeev, A. G., Meagher, M. M., Kelley, S. S., & Volkov, V. V. (2000). Fouling of poly -1-(trimethylsilyl)-1-propyne membranes in pervaporative recovery of butanol from aqueous solutions and ABE fermentation broth. Journal of Membrane Science, 173(1), 133-144. Doi: 10.1016/s0376-7388(00)00359-8
Friedl, A., Qureshi, N., & Maddox, I. S. (1991). Continuous acetone-butanol-ethanol (ABE) fermentation using immobilized cells of Clostridium acetobutylicum in a packed bed reactor and integration with product removal by Pervaporation Biotechnology and Bioengineering, 38(5), 518-527.
He, Q., & Chen, H. Z. (2013). Improved efficiency of butanol production by absorbent fermentation with a renewable carrier. Biotechnology for Biofuels, 6, 9. Doi: 10.1186/1754-6834-6-121
Huang, W. C., Ramey, D. E., & Yang, S. T. (2004). Continuous production of butanol by Clostridium acetobutylicum immobilized in a fibrous bed bioreactor. Applied Biochemistry and Biotechnology, 113, 887-898.
Ishizaki, A., Michiwaki, S., Crabbe, E., Kobayashi, G., Sonomoto, K., & Yoshino, S. (1999). Extractive acetone-butanol-ethanol fermentation using methylated crude palm oil as extractant in batch culture of Clostridium saccharoperbutylacetonicum N1-4 (ATCC 13564). Journal of Bioscience and Bioengineering, 87(3), 352-356. Doi: 10.1016/s1389-1723(99)80044-9
James, S. L. (2003). Metal-organic frameworks. Chemical Society Reviews, 32(5), 276-288. Doi: 10.1039/b200393g
Kuo, C.-H., Tang, Y., Chou, L.-Y., Sneed, B. T., Brodsky, C. N., Zhao, Z., & Tsung, C.-K. (2012). Yolk-Shell Nanocrystal@ZIF-8 Nanostructures for Gas-Phase Heterogeneous Catalysis with Selectivity Control. Journal of the American Chemical Society, 134(35), 14345-14348. Doi: 10.1021/ja306869j
Lee, S., JH, P., SH, J., LK, N., J, K., & KS., J. (2008). Fermentative butanol production by Clostridia. Biotechnol Bioeng, 19.
Li, S. Y., Srivastava, R., & Parnas, R. S. (2011). Study of in situ 1-Butanol Pervaporation from A-B-E Fermentation Using a PDMS Composite Membrane: Validity of Solution-Diffusion Model for Pervaporative A-B-E Fermentation. Biotechnology Progress, 27(1), 111-120. Doi: 10.1002/btpr.535
Liu, F. F., Liu, L., & Feng, X. S. (2005). Separation of acetone-butanol-ethanol (ABE) from dilute aqueous solutions by pervaporation. Separation and Purification Technology, 42(3), 273-282. Doi: 10.1016/j.seppur.2004.08.005
Matsumura, M., Takehara, S., & Kataoka, H. (1992). Continuous butanol/isopropanol fermentation in down-flow column reactor coupled with pervaporation using supported liquid membrane. Biotechnology and Bioengineering, 39, 148-156.
Nielsen, D. R., & Prather, K. J. (2009). In Situ Product Recovery of n-Butanol Using Polymeric Resins. Biotechnology and Bioengineering, 102(3), 811-821. Doi: 10.1002/bit.22109
Nielsen, L., Larsson, M., Holst, O., & Mattiasson, B. (1988). Adsorbents for extractive bioconversion applied to the acetone-butanol fermentation. Applied Microbiology and Biotechnology, 28, 5.
NREL, N. R. E. L. (2006). From Biomass to Biofuels : NREL Leads the Way. .
Phan, A., Doonan, C. J., Uribe-Romo, F. J., Knobler, C. B., O'Keeffe, M., & Yaghi, O. M. (2010). Synthesis, Structure, and Carbon Dioxide Capture Properties of Zeolitic Imidazolate Frameworks. Accounts of Chemical Research, 43(1), 58-67. Doi: 10.1021/ar900116g
Qureshi, N., & Blaschek, H. P. (1999). Production of acetone butanol ethanol (ABE) by a hyper-producing mutant strain of Clostridium beijierinckii BA101 and recovery by pervaporation. Biotechnology Progress, 15(4), 594-602. Doi: 10.1021/bp990080e
Qureshi, N., Hughes, S., Maddox, I. S., & Cotta, M. A. (2005). Energy-efficient recovery of butanol from model solutions and fermentation broth by adsorption. Bioprocess and Biosystems Engineering, 27(4), 215-222. Doi: 10.1007/s00449-005-0402-8
Qureshi, N., & Maddox, I. S. (1995). CONTINUOUS PRODUCTION OF ACETONE-BUTANOL-ETHANOL USING IMMOBILIZED CELLS OF CLOSTRIDIUM-ACETOBUTYLICUM AND INTEGRATION WITH PRODUCT REMOVAL BY LIQUID-LIQUID-EXTRACTION. Journal of Fermentation and Bioengineering, 80(2), 185-189. Doi: 10.1016/0922-338x(95)93217-8
Qureshi, N., Meagher, M. M., Huang, J., & Hutkins, R. W. (2001). Acetone butanol ethanol (ABE) recovery by pervaporation using silicalite-silicone composite membrane from fed-batch reactor of Clostridium acetobutylicum. Journal of Membrane Science, 187(1-2), 93-102. Doi: 10.1016/s0376-7388(00)00667-0
Ramey, D., & Yang, S.-T. (2004). Production of Butyric Acid and Butanol from Biomass Department of Energy (Morgantown, WV). . U.S. .
Saint Remi, J. C., Remy, T., Van Hunskerken, V., van de Perre, S., Duerinck, T., Maes, M., . . . Denayer, J. F. M. (2011). Biobutanol Separation with the Metal-Organic Framework ZIF-8. Chemsuschem, 4(8), 1074-1077. Doi: 10.1002/cssc.201100261
Tashiro, Y., Takeda, K., Kobayashi, G., Sonomoto, K., Ishizaki, A., & Yoshino, S. (2004). High butanol production by Clostridium saccharoperbutylacetonicum N1-4 in fed-batch culture with ph-stat continuous butyric acid and glucose feeding method. Journal of Bioscience and Bioengineering, 98(4), 263-268.
Thomas, PIGFORD, K., L, R., WILKE, R., C., & SHERWOOD. (1975).
Mass Transfer. New York: mcgraw-Hill.
Vrana, D. L., Meagher, M. M., Hutkins, R. W., & Duffield, B. (1993). PERVAPORATION OF MODEL ACETONE-BUTANOL-ETHANOL FERMENTATION PRODUCT SOLUTIONS USING POLYTETRAFLUOROETHYLENE MEMBRANES. Separation Science and Technology, 28(13-14), 2167-2178. Doi: 10.1080/01496399308016741
Wang, B., Cote, A. P., Furukawa, H., O'Keeffe, M., & Yaghi, O. M. (2008). Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs. Nature, 453(7192), 207-U206. Doi: 10.1038/nature06900
Wu, H., Chen, X.-P., Liu, G.-P., Jiang, M., Guo, T., Jin, W.-Q., . . . Zhu, D.-W. (2012). Acetone-butanol-ethanol (ABE) fermentation using Clostridium acetobutylicum XY16 and in situ recovery by PDMS/ceramic composite membrane. Bioprocess and Biosystems Engineering, 35(7), 1057-1065. Doi: 10.1007/s00449-012-0721-5
Yaghi, M., O., Park, K. S., Ni, Z., Cote, A. P., Choi, J. Y., . . . O'Keeffe, M. (2006). Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proceedings of the National Academy of Sciences of the United States of America, 103(27), 10186-10191. Doi: 10.1073/pnas.0602439103
Yaghi, O. M., Li, H., Eddaoudi, M., & O'Keeffe, M. (1999). Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature, 402(6759), 276-279.
Yang, X. P., Tsai, G. J., & Tsao, G. T. (1994). ENHANCEMENT OF IN-SITU ADSORPTION ON THE ACETONE-BUTANOL FERMENTATION BY CLOSTRIDIUM-ACETOBUTYLICUM. Separations Technology, 4(2), 81-92. Doi: 10.1016/0956-9618(94)80009-x
Yang, X. P., & Tsao, G. T. (1995). ENHANCED ACETONE-BUTANOL FERMENTATION USING REPEATED FED-BATCH OPERATION COUPLED WITH CELL RECYCLE BY MEMBRANE AND SIMULTANEOUS REMOVAL OF INHIBITORY PRODUCTS BY ADSORPTION. Biotechnology and Bioengineering, 47(4), 444-450. Doi: 10.1002/bit.260470405
Yen, H.-W., Chen, Z.-H., & Yang, I. K. (2012). Use of the composite membrane of poly(ether-block-amide) and carbon nanotubes (cnts) in a pervaporation system incorporated with fermentation for butanol production by Clostridium acetobutylicum. Bioresource Technology, 109, 105-109. Doi: 10.1016/j.biortech.2012.01.017
王鑫昕. (2008). 原位萃取發酵耦合工藝高產丁醇的初步研究. 河北農業大學學報, 31(6), 62-64.
周仕凱, & 許梅娟. (2009). 新能源─生物產丁醇. 科學發展雜誌, 433, 5.

無法下載圖示 全文公開日期 2021/08/03 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE