簡易檢索 / 詳目顯示

研究生: 林復翔
Fu-Hsiang Lin
論文名稱: 聚醯胺-6/聚乙烯乙二醇電紡絲表面修飾應用於臨床大腸癌檢測
Modified Electrospun Modified Electrospun Nylon6/ Poly(ethylene oxide) Nanofibers for Detection of Clinical Colon Cancer
指導教授: 陳建光
Jem-Kun Chen
口試委員: 陳志堅
Jyh-Chien Chen
鄭智嘉
Chih-Chia Cheng
李愛薇
Ai-Wei Li
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 118
中文關鍵詞: 靜電紡絲抗生物沾附循環腫瘤細胞細胞抓取上皮黏著分子大腸癌臨床實驗
外文關鍵詞: Electrospinning, Antibiofouling, Circulating tumor cell, Cell capture, anti-EpCAM, Clinical trials of colon cancer
相關次數: 點閱:354下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究目的為設計一種複合奈米纖維偵測大腸癌病患外周血中的循環腫瘤細胞(CTCs),然而循環腫瘤細胞的偵測往往會受到大量白血球的影響。複合奈米纖維分別由尼龍6 (Nylon-6)、聚乙烯乙二醇(Poly(ethylene oxide);PEO)所構成,其中尼龍6 (Nylon-6)是做為檢測的基底材料,用於防止奈米纖維水解於水中。聚乙烯乙二醇(Poly(ethylene oxide)作為生物抗沾黏材料,且表面改質後仍有生物抗沾黏功能可避免白血球沾附,PEO經過(3-aminopropyl)triethoxysilane (APTES)修飾後帶有NH2官能基可固定Streptavidin和anti EpCAM來偵測CTCs。將此兩種材料以甲酸為溶劑用不同的比例進行混合,利用靜電紡絲製造出纖維薄膜,達到不易水解、生物抗沾黏、且富含anti EpCAM抗體的目的,Nylon-6/PEO最佳的混合比例為30/70。
首先測試奈米纖維抗白血球沾附的能力,發現PEO整體平均具有90%的抗白血球沾黏能力。再進一步拿癌細胞株(HCT-116、DLD-1、SAS和Hela)進行檢測,證明本材料可在環境中含有10到10萬顆的情況下來偵測CTCs,其結果為高達70%的抓取效率。
最終進行21次臨床實驗,得知只要是大腸癌病人便一定可抓到循環腫瘤細胞,本複合奈米纖維有著低成本且檢測快速的優勢,未來具有高度發展潛力成為新參考指標,並希望能和現行大腸癌參考指標;CEA腫瘤標記成為雙指標。


In this study, we designed an electrospinning composite nanofiber to capture colon circulating tumor cells (CTCs) from peripheral blood of colon cancer patients. Detection of CTCs is always interfered by lots of leukocyte contaning in human blood. We introduced nylon-6 and poly(ethylene oxide)(PEO) to electrospin as nanofiber membranes. Nylon-6 is a substrate which can avoid the nanofibers to dissolve in aqueous solution. PEO and derivatives are anti-fouling material to prevent leukocyte fouling. For grafting amine groups, PEO is modified with (3-aminopropyl)triethoxysilane (APTES). Amine groups are media to fix antibody biotin(EpCAM biotin) to caught the CTCs. The result suggest that the radio of Nylon6/PEO is 30/70.
After testing, we find nanofibers possessing the ability to antifoul of leukocyte. The efficiency is 90%. Colon cancer cell line (HCT-116,DLD-1,SAS and Hela), 10 to 100000 colon cancer cells, are mixed in 0.3ml medium to perform the capture of CTCs. The results show that detection of efficiency increase linearly upon 70%.
Finally, we started clinical tests for 21 times. If the blood come from colon cancer patients, we will find CTCs. There are some advantage in our nanofibers. For example, we will know the result in the short time,and the cost of nanofibers are very low. We trust our nanofibers possessing high potential being a new reference for colon cancer patients like CEA.

摘要 IV ABSTRACT VI 致謝 VIII 目錄 X 表目錄 XV 圖目錄 XVI 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 2 2.1靜電紡絲工程 3 2.2靜電紡絲技術之原理 4 2.3 靜電紡絲之主要參數 6 2.4 影響靜電紡絲的因素 6 2.5 聚醯胺-6 7 2.6 聚乙烯乙二醇 8 2.7 抗生物沾黏材料之簡介 9 2.8 循環腫瘤細胞 11 2.9抗體[23] 13 2.10 1-乙基-(3-二甲基氨基丙基)碳醯二亞胺/N-羥基丁二醯亞胺的活化反應 (EDC/NHS REACTION) 16 第三章 儀器原理 17 3.1 高解析度場發射掃描式電子顯微鏡(FE-SEM) 17 3.2 原子力顯微鏡 (AFM) 19 3.3 X-RAY光電子能譜儀(XPS) 23 3.4 接觸角測量儀(CA) 25 3.5雷射掃描式共軛焦顯微鏡(LASER SCANNING CONFOCAL MICROSCOPE, LSCM)[28] 26 3.6三維光學輪廓儀 28 第4章 實驗部分 30 4.1 實驗藥品 30 4.2 實驗儀器 32 4.3 實驗架構 34 4.4實驗步驟 35 4.4.1. PEO電紡絲的製備 35 4.4.2.Nylon6/PEO的混合高分子溶液比例 36 4.4.3. 靜電紡絲材料製備 37 4.4.4. 掃描式電子顯微鏡(SEM)試片試片之製作 37 4.4.5.奈米纖維降解度試驗 38 4.4.6.奈米纖維的表面修飾(APTES) 39 4.4.7.奈米纖維的表面修飾上Streptavidin 40 4.4.8.奈米纖維的表面修飾上anti-EpCAM(biotin) 41 4.4.9.抗白血球沾附之測試 42 4.4.9.1.血液的前置處理 42 4.4.9.2.抗白血球沾黏試驗 42 4.4.9.3.光學顯微鏡試片的製作 43 4.4.10.癌細胞株 44 4.4.10.1.癌細胞株的來源(HCT-116、DLD-1、SAS、Hela) 44 4.4.10.2.癌細胞的抓取實驗 44 4.4.10.3.大腸癌細胞的螢光染色 45 4.4.10.4.FITC-Streptavidin和Cy-5 Biotin的標準曲線 46 4.4.10.4.臨床模擬 48 4.4.11.臨床上的運用 48 第5章 結果與討論 49 5.1 靜電紡絲的製備、型態與性質 49 5.1.1 PEO奈米纖維的製備 49 5.1.2 PEO/Nylon6複合奈米纖維的製備 51 5.1.3.接觸角 54 5.1.4.PEO/NYLON6複合奈米纖維降解度與型態 55 5.1.5.水解後型態 57 5.1.6.粗糙度 59 5.2.表面改質之化學鑑定 62 5.2.1. 化學電子能譜分析儀ESCA分析 62 5.2.1.1. ESCA WIDESCAN分析 62 5.2.1.2. C1S 能譜圖 64 5.2.1.3. N1S 能譜圖 66 5.2.2. 生物親合法之螢光檢測分析 68 5.3. 奈米纖維抗白血球細胞沾黏 71 5.4. 進入臨床前的準備 74 5.4.1.奈米纖維專一性抓取循環腫瘤細胞 74 5.4.2.反應時間不同 76 5.4.3.不同顆數細胞的抓取 78 5.4.4.三明治免疫染色法 80 5.4.5.掃描式電子顯微鏡下的大腸癌細胞 81 5.4.6.模擬臨床 83 5.4.6.1.利用細胞尺寸及型態進行辨識 83 5.4.6.2三明治免疫染色法(上皮細胞分子) 85 5.5臨床結果討論與未來性 87 5.5.1臨床結果 87 5.5.2結論和論文之未來性 89 第6章 參考文獻 90

[1] FU, Guo-Dong, et al. Smart nanofibers with a photoresponsive surface for controlled release. ACS applied materials & interfaces, 2009, 1.11: 2424-2427..
[2] HUANG, Zheng-Ming, et al. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites science and technology, 2003, 63.15: 2223-2253..
[3] RENEKER, Darrell H.; CHUN, Iksoo. Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology, 1996, 7.3: 216.
[4] HUANG, Zheng-Ming, et al. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites science and technology, 2003, 63.15: 2223-2253.
[5] LIANG, Dehai; HSIAO, Benjamin S.; CHU, Benjamin. Functional electrospun nanofibrous scaffolds for biomedical applications. Advanced drug delivery reviews, 2007, 59.14: 1392-1412.
[6] PHAM, Quynh P.; SHARMA, Upma; MIKOS, Antonios G. Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue engineering, 2006, 12.5: 1197-1211.
[7] TEO, Wee-Eong, et al. A dynamic liquid support system for continuous electrospun yarn fabrication. Polymer, 2007, 48.12: 3400-3405.
[8] PANT, Hem Raj, et al. Effect of successive electrospinning and the strength of hydrogen bond on the morphology of electrospun nylon-6 nanofibers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 370.1: 87-94.
[9] SAMPERI, Filippo, et al. Essential role of chain ends in the Ny6/PBT exchange. A combined NMR and MALDI approach. Macromolecules, 2003, 36.19: 7143-7154.
[10] JO, Seongbong; PARK, Kinam. Surface modification using silanated poly (ethylene glycol) s. Biomaterials, 2000, 21.6: 605-616.
[11] VENAULT, Antoine, et al. Bacterial resistance control on mineral surfaces of hydroxyapatite and human teeth via surface charge-driven antifouling coatings. ACS applied materials & interfaces, 2014, 6.5: 3201-3210.
[12] FRANCIS, G. E., et al. PEGylation of cytokines and other therapeutic proteins and peptides: the importance of biological optimisation of coupling techniques. International journal of hematology, 1998, 68.1: 1-18.
[13] VERONESE, Francesco M.; PASUT, Gianfranco. PEGylation, successful approach to drug delivery. Drug discovery today, 2005, 10.21: 1451-1458.
[14] ZHAO, Yong-Hong, et al. Achieving highly effective non-biofouling performance for polypropylene membranes modified by UV-induced surface graft polymerization of two oppositely charged monomers. The Journal of Physical Chemistry B, 2010, 114.7: 2422-2429.
[15] OSTUNI, Emanuele, et al. A survey of structure-property relationships of surfaces that resist the adsorption of protein. Langmuir, 2001, 17.18: 5605-5620.
[16] KRISHNAN, Sitaraman; WEINMAN, Craig J.; OBER, Christopher K. Advances in polymers for anti-biofouling surfaces. Journal of Materials Chemistry, 2008, 18.29: 3405-3413.
[17] BRAUN, Stephan; NAUME, Bjrn. Circulating and disseminated tumor cells. Journal of clinical oncology, 2005, 23.8: 1623-1626.
[18] SCHILLING, David, et al. Isolated, disseminated and circulating tumour cells in prostate cancer. Nature Reviews Urology, 2012, 9.8: 448-463.
[19] KARABACAK, Nezihi Murat, et al. Microfluidic, marker-free isolation of circulating tumor cells from blood samples. Nature protocols, 2014, 9.3: 694-710.
[20] GLEGHORN, Jason P., et al. Capture of circulating tumor cells from whole blood of prostate cancer patients using geometrically enhanced differential immunocapture (GEDI) and a prostate-specific antibody. Lab on a chip, 2010, 10.1: 27-29.
[21] MENG, Songdong, et al. HER-2 gene amplification can be acquired as breast cancer progresses. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101.25: 9393-9398.
[22] WEIGHT, Ryan M., et al. Photoacoustic detection of metastatic melanoma cells in the human circulatory system. Optics letters, 2006, 31.20: 2998-3000.
[23] HAN, CHENG-ZUO. Fabrication of the patterned Poly (methacrylic acid) brushes on silicon wafer via surface-initiated ATRP for covalently coupling antibody-adhesive gelatin. 2013..
[24] Hermanson GT. Bioconjugate techniques:Academic press:2013
[25] XU, F. J.; WANG, Z. H.; YANG, W. T. Surface functionalization of polycaprolactone films via surface-initiated atom transfer radical polymerization for covalently coupling cell-adhesive biomolecules. Biomaterials, 2010, 31.12: 3139-3147.
[26] ZHANG, Changhong, et al. Chemical surface modification of parylene C for enhanced protein immobilization and cell proliferation. Acta biomaterialia, 2011, 7.10: 3746-3756.
[27] ZHANG, Youwei, et al. Facile fabrication of pH-sensitive core–shell nanoparticles based on HEC and PMAA via template polymerization. European Polymer Journal, 2010, 46.7: 1425-1435.
[28] 美嘉儀器股份有限公司共軛焦小組, 徠卡雷射掃描共軛焦顯微鏡之技術與應用概論. 美嘉儀器股份有限公司: 2000.
[29] 中美科學股份有限公司 Talysurf CCI 6000白光干涉儀 介紹
[30] GENG, Xinying; KWON, Oh-Hyeong; JANG, Jinho. Electrospinning of chitosan dissolved in concentrated acetic acid solution. Biomaterials, 2005, 26.27: 5427-5432.
[31] WU, Linbo; DING, Jiandong. In vitro degradation of three-dimensional porous poly (D, L-lactide-co-glycolide) scaffolds for tissue engineering. Biomaterials, 2004, 25.27: 5821-5830.
[32] WANG, Huiyu, et al. Carboxybetaine methacrylate-modified nylon surface for circulating tumor cell capture. ACS applied materials & interfaces, 2014, 6.6: 4550-4559.
[33] LIAW, Lucy, et al. Osteopontin and β3 integrin are coordinately expressed in regenerating endothelium in vivo and stimulate Arg-Gly-Asp–dependent endothelial migration in vitro. Circulation research, 1995, 77.4: 665-672.
[34] YUK, Jong Seol, et al. Surface plasmon-coupled emission (SPCE)-based immunoassay using a novel paraboloid array biochip. Biosensors and Bioelectronics, 2010, 25.6: 1344-1349.
[35] PRINGLE, John R., et al. Fluorescence microscopy methods for yeast. Methods Cell Biol, 1989, 31: 357-435.
[36] YUK, Jong Seol, et al. Surface plasmon-coupled emission (SPCE)-based immunoassay using a novel paraboloid array biochip. Biosensors and Bioelectronics, 2010, 25.6: 1344-1349.
[37] MCKEE, Matthew G., et al. Solution rheological behavior and electrospinning of cationic polyelectrolytes. Macromolecules, 2006, 39.2: 575-583.
[38] DOSHI, Jayesh; RENEKER, Darrell H. Electrospinning process and applications of electrospun fibers. In: Industry Applications Society Annual Meeting, 1993., Conference Record of the 1993 IEEE. p. 1698-1703.
[39] PANT, Hem Raj, et al. Effect of successive electrospinning and the strength of hydrogen bond on the morphology of electrospun nylon-6 nanofibers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 370.1: 87-94.
[40] FONG, H.; CHUN, I.; RENEKER, D. H. Beaded nanofibers formed during electrospinning. Polymer, 1999, 40.16: 4585-4592.
[41] LEE, Keun Hyung, et al. Mechanical behavior of electrospun fiber mats of poly (vinyl chloride)/polyurethane polyblends. Journal of Polymer Science Part B: Polymer Physics, 2003, 41.11: 1256-1262.
[42] HUANG, Her-Hsiung, et al. Effect of surface roughness of ground titanium on initial cell adhesion. Biomolecular engineering, 2004, 21.3: 93-97.
[43] XU, Chengyu, et al. In vitro study of human vascular endothelial cell function on materials with various surface roughness. Journal of Biomedical Materials Research Part A, 2004, 71.1: 154-161.
[44] OWEN, Shawn C.; SHOICHET, Molly S. Design of three‐dimensional biomimetic scaffolds. Journal of Biomedical Materials Research Part A, 2010, 94.4: 1321-1331.
[45] DAUPHAS, Stéphanie, et al. Stepwise functionalization of SiN x surfaces for covalent immobilization of antibodies. Thin Solid Films, 2009, 517.21: 6016-6022.
[46] CHUA, Kian-Ngiap, et al. Surface-aminated electrospun nanofibers enhance adhesion and expansion of human umbilical cord blood hematopoietic stem/progenitor cells. Biomaterials, 2006, 27.36: 6043-6051.
[47] HE, Chao, et al. Modification of polyethersulfone membranes using terpolymers engineered and integrated antifouling and anticoagulant properties. Polymers for Advanced Technologies, 2013, 24.12: 1040-1050.
[48] SUN, Wenjie, et al. High-Performance Size-Based Microdevice for the Detection Of Circulating Tumor Cells from Peripheral Blood in Rectal Cancer Patients. 2013.
[49] KHASHAN, S. A.; ALAZZAM, A.; FURLANI, E. P. Computational Analysis of Enhanced Magnetic Bioseparation in Microfluidic Systems with Flow-Invasive Magnetic Elements. Scientific reports, 2014, 4.
[50] ZHENG, Siyang; LIU, Jing-Quan; TAI, Yu-Chong. Streamline-based microfluidic devices for erythrocytes and leukocytes separation. Microelectromechanical Systems, Journal of, 2008, 17.4: 1029-1038.
[51] PATRIARCA, Carlo, et al. Epithelial cell adhesion molecule expression (CD326) in cancer: a short review. Cancer treatment reviews, 2012, 38.1: 68-75.
[52] WENT, P., et al. Frequent high-level expression of the immunotherapeutic target Ep-CAM in colon, stomach, prostate and lung cancers. British journal of cancer, 2006, 94.1: 128-135.
[53] SUKHDEO, Kumar, et al. Multiplex flow cytometry barcoding and antibody arrays identify surface antigen profiles of primary and metastatic colon cancer cell lines. PloS one, 2013, 8.1: e53015.

無法下載圖示 全文公開日期 2020/07/28 (校內網路)
全文公開日期 2025/07/28 (校外網路)
全文公開日期 2020/07/28 (國家圖書館:臺灣博碩士論文系統)
QR CODE