簡易檢索 / 詳目顯示

研究生: 黃睿詳
Ruei-Siang Huang
論文名稱: 發泡聚醯亞胺/中空SiO2球複合材料製備與性質分析
Preparation and characterization of polyimide foam / SiO2 hollow sphere composite materials
指導教授: 郭東昊
Dong-Hau Kuo
口試委員: 邱顯堂
Hsien-Tang Chiu
邱智瑋
Chih-Wei Chiu
郭東昊
Dong-Hau Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 125
中文關鍵詞: 發泡聚醯亞胺中空球
外文關鍵詞: Polyimide foam, SiO2 hollow sphere
相關次數: 點閱:200下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本實驗利用奈米顆粒填充分散法,將中空球與聚醯亞胺前驅體溶液混合並形成發泡聚醯亞胺/中空SiO2球的複合材料,探討不同中空SiO2球處理過後對整體複合材料特性的影響。
1.利用0.4g 4,4’-氧苯二胺(ODA)與0.6204g 4,4’-氧基二汰酸(ODPA)製備出5種不同反應條件的發泡聚醯亞胺,發現較佳製備的條件為甲醇1.289 ml/THF 2.211 ml (M1.3)、所有單體加入之後的反應時間為8小時 (R8)、第一階段後處理溫度為40℃與65℃ (O40與O65)、第二階段後處理溫度為90℃ (T90)時,可以得到較佳的發泡微觀結構,但對複合材料的官能基沒有造成影響,並都已醯亞胺化完全。在溫度低於450℃以下,發泡聚醯亞胺都保持著良好的耐熱性和低儲存模量。
2. 自製中空球的粒徑為100~200nm,形狀為圓形,無破裂,並利用APTS和GPTS對經煆燒的中空球進行表面改質,可以成功地製備出改質中空球。
3. 所有單體加入之後再加入中空球反應時間6小時為發泡聚醯亞胺/中空球複合材料的最佳發泡條件,添加不同表面改質處理方式的中空球分散於聚醯亞胺中,反應得到發泡聚醯亞胺複合(中空SiO2球)材料(PFHS、PFHSA、PFHSBA和PFHSBG),對其官能基沒有造成影響,並且都已醯亞胺化完全。
4. 發泡聚醯亞胺複合(經煆燒中空SiO2球)材料(PFHSB),中空球均勻的分散在發泡聚醯亞胺中。發泡聚醯亞胺複合(未煆燒但經(APTS)改質中空SiO2球)材料(PFHSA),中空球包覆於高分子內,較少裸露而不易被發現。發泡聚醯亞胺複合(經煆燒再經(APTS)改質中空SiO2球)材料(PFHSBA),中空球有突出,因此較易在發泡聚醯亞胺中被發現。發泡聚醯亞胺複合(經煆燒再經(GPTS)改質中空SiO2球)材料(PFHSBG),中空球被包覆住的面積較大,露出較少的中空球面積。在溫度低於450℃以下,發泡聚醯亞胺/中空SiO2球複合材料都保持著良好的耐熱性。
5. 於熱傳實驗中,發泡聚醯亞胺/煆燒中空球複合材料(PFHSB)一端熱源溫度300℃,另一端溫度(T2)約僅70℃,說明添加煆燒中空球於發泡聚醯亞胺中,在熱導方面並不會造成太大的影響,仍保有較佳的低熱導性。


In this work, polyimides foam/hollow SiO2 sphere composites prepared by a nanoparticle dispersion method. We used SiO2 hollow spheres to mix with the polyimide precursor solution, followed by a foaming procedure to obtain the polymer-matrix composites. The characterizations of the hybrid composites at different contents of SiO2 hollow spheres un-treated or treated by surfactants were investigated. The following results are achieved:

1. We utilized 0.4g 4,4’-Oxydianiline (ODA) and 0.6204g 4,4’-Oxydiphthalic (ODPA) to prepare polyimide foams at five different conditions and found that the better result is prepared by using a mixed solution of 1.289 ml methanol and 2.211 ml THF (M1.3)、a eight-hour reaction after all the monomers are added (R8)、a first-stage treatment at 40℃ or 65℃ (O40 or O65), and a second-stage treatment at 90℃ (T90). After the imidization was completely finished, we can get better foam microstructure without the changes in the organic functional groups. Polyimide foam has maintained good heat resistance and low storage modulus below 450℃,.
2. The hollow SiO2 spheres have the size of 100 ~ 200nm. They keeps the spherical shape and are free from damage or cracking. Silane surfactants of APTS and GPTS were successfully used to modify the 400℃-calcined SiO2 hollow spheres.
3. The best foaming condition for the hollow SiO2 sphere-filled polyimide composites were undergone a 6-hour reaction after adding precursors and hollow spheres. Four kinds of polyimide foam composites (PFHS, PFHSA, PFHSBA and PFHSBG) have been obtained after mixing the hollow SiO2 spheres with different surface modifications. After imidization at 300℃, all the composites showed the similar organic functional groups by IR analyses.
4. Polyimide foam composites of PFHSB with calcined SiO2 hollow spheres had the hollow spheres completely dispersed in the polyimide foam. Polyimide foam composites of PFHSA with TEOS-derived and APTS-modified hollow SiO2 spheres had the hollow spheres imbedded in polymer matrix and difficult to be observed. Polyimide foam composites of PFHSBA with calcined and APTS-modified hollow SiO2 spheres had the hollow spheres protruded out of polymer matrix and easy to be observed. Polyimide foam composites of PFHSBG with calcined and GPTS-modified hollow SiO2 spheres had the hollow spheres mostly covered by polymer matrix and difficult to be observed. All polyimide foam/SiO2 hollow spheres composites had maintained good heat resistance below 450℃.
5. In the heat transfer experiments, polyimide foam/composite hollow spheres calcined (PFHSB) with one end kept at high temperature of 300 ℃ for 30 min had the T2 temperature of ~70 ℃ at the other end. The results displayed that after adding the calcined hollow spheres into polyimide foam, the hybrid composite still remained low thermal conductivity.

第一章 緒論1 1-1 前言1 1-2 發泡聚醯亞胺[1][2]1 1-3 中空球[4][5]4 1-4研究動機5 第二章 基礎理論與文獻回顧6 2-1 高分子奈米複合材料的製備[6]6 2-1-1 Sol-Gel 法[7]6 2-1-2 奈米顆粒直接填充分散法[8]7 2-2 發泡聚醯亞胺的種類[9][10]7 2-2-1 發泡聚醯亞胺的不同合成類型8 2-2-2 後處理加工13 2-3 中空球不同的合成方法[4]15 2-4.文獻回顧17 2-4-1二元酐的二元酯和二胺反應合成17 2-4-2 溶液中2步法合成發泡聚醯亞胺41 2-4-3二元酐或多元酸和多異氰酸酯反應合成發泡聚醯亞胺58 第三章 實驗方法與步驟67 3-1實驗藥品67 3-2實驗設備68 3-3 儀器分析介紹69 3-4實驗步驟71 3-4-1 ODA純化71 3-4-2 ODPA純化72 3-4-3 發泡聚醯亞胺的製備73 3-4-4 中空球的製備74 3-4-5 改質中空球76 3-4-6 發泡聚醯亞胺/中空球複合材料的製備77 3-4-7 試片代號78 第四章 結果與討論81 4-1中空球的特性81 4-1-1 中空球FT-IR分析81 4-1-2中空球SEM分析84 4-2 發泡聚醯亞胺的特性85 4-2-1 發泡聚醯亞胺FT-IR分析85 4-2-2 發泡聚醯亞胺SEM分析87 4-2-3發泡聚醯亞胺TGA分析95 4-2-4 發泡聚醯亞胺DMA分析97 4-3發泡聚醯亞胺/中空SiO2球複合材料基本特性99 4-3-1 發泡聚醯亞胺/中空SiO2球複合材料FTIR分析99 4-3-2 發泡聚醯亞胺/中空球複合材料SEM分析100 4-3-3 發泡聚醯亞胺/中空SiO2球複合材料TGA分析111 4-3-4 發泡聚醯亞胺/中空SiO2球複合材料熱導分析118 4-3-5發泡聚醯亞胺/中空SiO2球複合材料DMA分析119 第五章 結論121 第六章 參考文獻124

[1] Ling-Ying Pan, Mao-Sheng Zhan, Kai Wang. Polymer engineering and science, 2010,p.1261-1267.
[2] Yan-Xia Shen, Mao-Sheng Zhan, Kai Wang, Xiao-Huan Li, Pi-Chang Pan. Journal of applied polymer science, 2010, Vol.115, p.1680-1687.
[3] Qiou Yin, Wang Shujun, New Chemical Materials, 2003, Vol.31, No.8:p.15-17
[4] Xie Fei, Qi Meizhou, Li Wenjiang, Wang Kai, Yu Zhenyun, Liu Bin.Progress in Chemistry, 2011, Vol.23, No.12:p.2522-2530.
[5] Liu Guixia, Hong Guangyan, Wang Jinxian, Dong Xiangting.Changchun Institute of Applied Chemistry, 2006, No.10:p.749-754.
[6] SHI Zhi-qiang, LIU Xiao-lei, LIU Xiao-bo. Chinese Journal of Symthetic Chemistry, 2004, Vol.12, No.3:p.251-254.
[7] Liu Huarong, Ge Xuewu, Ni Yonghong, Ye Qiang, Zhang Guangxiang, Zhang Zhichang, Zhang Manwei. Progress in Chemistry, 2001, Vol.13, No.5:p.403-407.
[8] Yan Manqing, Wang Pinghua. Modern Plastic Processing and Applications, 2002, Vol.14, No.5:p.61-64.
[9] Zhou Chengfei.China Rubber /Plastice Technology &Equipment, 2005, Vol.31, No.6:p.23-25.
[10] Long Yongjiang, Zhang Guangcheng, Chen Ting, Li Hongchun, Dong Shanlai. China Synthetic Resin and Plastics, 2007, Vol.24, No.6:p.68-72.
[11] Hui-Juan Chu, Bao-Ku Zhu, You-Yi Xu, Polymers for advanced technologies, 2006, Vol.17, p.366-370.
[12] Chu Huijuan,Zhu Baoku,Xu Youyi, Guangdong chemical industry, 2007, Vol.34, No.12:p.14-17
[13] CHU Hui-juan ,ZHU Bao-ku ,XU You-yi , Applied chemical industry, 2008, Vol.37, No.4:p.410-412.
[14] Zhao Xihao, Zhang Guangcheng, Zhang Yuezhou, Chen Ting, Long Yongjiang, China synthetic resin and plastics, 2008, Vol.25, No.6:p. 33-36
[15] Qi Na,Wang Ke,Xiao Jijun, Acta polymerica sinica, 2009, No.5:p.483-487
[16] Ma Mingrninf, Bai Xiaojunl, Zong Chengzhong, Liu Lianhe, Zttang Shuhua, China synthetic resin and plastics, 2011, Vol.28, No.6:p. 22-24
[17] LI Guang-zhu,SHEN Yan-xia,ZHAN Mao-sheng, School of materials science and engineering, 2009, No.7:p.43-46
[18] Yan-Xia Shen,Mao-Sheng Zhan,Kai Wang, Polymers advanced technologies, 2010, Vol.21,p.704-709.
[19] Ling-Ying Pan, Yan-Xia Shen, Mao-Sheng Zhan, Kai Wang, Da-Li Gao, Polymer composites, 2010, Vol.31, No.1:p.43-49.
[20] Xiao-Yan Liu, Mao-Sheng Zhan, Yan-Xia Shen, Kai Wang, Journual of applied polymer science, 2011, Vol.119, .p.3253-3263.
[21] Wang Liancai,Guo Baohua,Zeng Xinmiao,Guo Jianmei,Li Shufeng, Engineering plastics application, 2008, Vol.36, No.3:p.6-8.
[22] ZHAN Mao-sheng,XU Xiao-qiang,PAN Ling-ying, Journal of aeronautical materials, 2010, Vol.30,No.3:p.55-60.
[23] Xiao-Yan Liu, Mao-Sheng Zhan, Kai Wang,Journual of applied polymer science, 2013, Vol.127,No.5:p.4129-4137.

QR CODE