簡易檢索 / 詳目顯示

研究生: 陳泓傑
Hong-Chieh Chen
論文名稱: CeO2中空球之殼層結構與其磁性之關聯性研究
Study of the correlation between shell structure and magnetism of CeO2 hollow spheres
指導教授: 陳詩芸
Shih-Yun Chen
口試委員: 郭東昊
Kuo, Dong-Hau
宋振銘
Jenn,Ming-Song
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 83
中文關鍵詞: 缺陷磁性界達電位二氧化鈰
外文關鍵詞: defect, magnetism, zeta-potential, cerium oxide
相關次數: 點閱:217下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用噴霧熱裂解方式形成二氧化鈰中空球,並利用二氧化鈰中空球在特定濃度之硝酸溶液震盪效應來表面改質,目的為改變樣品之表面缺陷濃度和缺陷分佈,接著使用穿透式電子顯微鏡、X光吸收光譜、震動樣品磁化儀及界達電位分析儀來闡述樣品缺陷、磁性、界達電位之關係。
    首先討論中空二氧化鈰經過300℃退火後,根據SEM圖計算粒徑變大且粒徑分佈範圍變廣,且在TEM影像下看到殼層晶粒成長的現象,磁化量則呈現一致的數值為0.0005emu/g。討論退火前退火後二氧化鈰具有不同表面結構在硝酸溶液震盪下之結果,發現兩種表面在硝酸溶液震盪下均會導致中空球表面皺褶、粗糙的產生,殼層厚度會受到溶解導致變薄,退火前二氧化鈰在硝酸溶液震盪下飽和磁化量從0.000538上升至0.006,退火後二氧化鈰在硝酸溶液震盪下飽和磁化量從0.0006上升至0.00514,皆比初始上升了10倍,退火前二氧化鈰在硝酸溶液震盪下界達電位從-48.8下降至-28.4,退火後二氧化鈰在硝酸溶液震盪下界達電位從-55.05下降至-28.2,根據先前實驗的結果探討表面Ce3+含量、飽和磁化量與界達電位之研究可以得到界達電位下降意謂著表面Ce3+含量上升。根據以上結果可以證實本實驗成功利用硝酸溶液震盪效應讓中空二氧化鈰表面Ce3+含量上升,擁有更大之磁化量。此結果可以成為後續以本質缺陷的方式誘發鐵磁性之參考。


    This study used spray pyrolysis to form the CeO2 hollow sphere and used this CeO2 hollow sphere in the specific concentration of nitric acid solution to change its surface property. The purpose of this study was trying to change the defect concentration of the surface and the defect distribution. TEM、X-ray absorption spectroscopy、VSM and zeta potential analysis are used to illustrate the relationship between defect、magnetism and zeta-potential.
    Firstly, the CeO2 hollow sphere after annealing at 3000C. According to the SEM image, the particle size and the range of distribution became larger, the grain growth of the shell was observed under the TEM image, the amount of magnetization is consistent with a value of 0.0005emu/g.
    The results of cerium oxide after annealing and before annealing have different surface structures under the shock of nitric acid solution. It is found that both surfaces will cause wrinkles and roughness of hollow spheres under the shock of nitric acid solution, and the thickness of shell will be affected by dissolution. Before the annealing, the saturation magnetization of cerium oxide increased from 0.000538 to 0.006 under the shock of nitric acid solution. After annealing, the saturation magnetization of cerium oxide increased from 0.0006 to 0.00514 under the shock of nitric acid solution. It is 10 times higher than the initial. Before annealing, the Zeta potential of cerium oxide decreased from -48.8 to -28.4 under the shock of nitric acid solution. After annealing, the Zeta potential of cerium oxide decreased from -55.05 to -28.2 under the shock of nitric acid solution. According to the results of previous experiments, the study of surface Ce3+ concentration, saturation magnetization and Zeta potential can be used to obtain which a decrease in the Zeta potential, means that the surface Ce3+ content rises.
    According to the above results, it can be confirmed that the experiment successfully uses the shock effect of the nitric acid solution to increase the content of Ce3+ on the surface of the hollow ceria, and has a larger magnetization. This result can be a reference for subsequent induction of ferromagnetism in a manner that is inherently deficient.

    目錄 摘要 I Abstract III 目錄 IV 圖目錄 VI 表目錄 VIII 第一章 緒論 1 1.1前言 1 1.2研究動機 2 第二章 文獻回顧 3 2.1稀磁性半導體 3 2.1.1稀磁性半導體的簡介 3 2.1.2稀磁性半導體機制來源 4 2.2.缺陷與磁性探討 7 2.3材料性質與探討背景 12 2.3.1物理性質與螢石結構 12 2.3.2化學性質 13 2.4二氧化鈰的製備方法 15 2.4.1物理法 15 2.4.2化學法 17 2.5界達電位 21 2.5.1 界達電位簡介 21 2.5.2 表面電荷的來源 22 2.5.3 電雙層結構 24 2.5.4 界達電位測量的機制 25 第三章 實驗步驟與分析技術 27 3.1 實驗流程 27 3.1.1 中空二氧化鈰之製備 27 3.1.2 中空二氧化鈰表面改質 28 3.2 X光繞射分析(X-ray Diffraction, XRD) 28 3.3 X吸收光譜分析技術 30 3.3.1 XAS介紹分析 30 3.3.2 XAS光譜分析 32 3.4 穿透式電子顯微鏡分析技術 34 3.4.1 穿透式電子顯微鏡/能量散佈能譜儀 36 3.4.2 電子顯微鏡之樣品製備 38 3.5材料磁性分析 39 3.6 界達電位量測 40 第四章 結果與討論 42 4.1 討論噴霧熱裂解法製備之二氧化鈰中空球 42 4.1.1 中空球之微結構分析 42 4.1.2 磁性分析 45 4.2退火對於噴霧熱裂解形成之二氧化鈰中空球形貌影響 46 4.2.1 中空球之微結構分析 46 4.2.2 磁性分析 49 4.2.3 表面電位分析 50 4.3 硝酸溶液對二氧化鈰中空球結構及磁性之影響 51 4.3.1 退火前二氧化鈰中空球浸至酸性溶液中產生之缺陷變化 51 4.3.2 退火後二氧化鈰中空球浸至於酸性溶液中產生之缺陷變化 59 4.4 綜合討論 65 第五章 結論 66 參考文獻 67

    [1] K. C. Ku et al. (2003), Appl. Phys. Lett., 82, pp2302-2304
    [2] R. P. Campion, K. W. Edmonds, L. X. Zhao, K. Y. Wang, C. T. Foxon, B. L. Gallagher and C. R. Staddon (2003), J. Crys. Growth., 247, pp42-48
    [3] Axe, J. D. (1965). Physical Review, 139(4A), A1215.
    [4] Singhal, R. K., Kumari, P., Samariya, A., Kumar, S., Sharma, S. C., Xing, Y. T., & Saitovitch, E. B. (2010). Applied Physics Letters, 97(17), 172503.
    [5] [29] Li, H.-Y., et al. Physical Review B, 2009. 79(19): p. 193401.
    [6] C. B. Fitzgerald, M. Venkatesan, L. S. Dorneles, R. Gunning, P. Stamenov, J. M.D. Coey,et al.hysical Review B, vol. 74, p. 115307, 09/12/ 2006.
    [7] R. S. Lubna, A. Bakhtyar, Z. Hao, W. G. Wang, Y. Q. Song, H. W. Zhang, et al.,"Detailed Journal of Physics:Condensed Matter, vol. 21, p. 486004, 2009.
    [8] 李維烈, 二氧化鈰奈米顆粒之缺陷結構與室溫鐵磁特性關連性研究.2017 PhD Thesis.
    [9] 曾瀚輝,金屬/氧化物之界面結構與其室溫鐵磁特性關聯性研究.2019.PhD Thesis.
    [10] S. Tsunekawa, R. Sahara, Y. Kawazoe, A. Kasuya, Mater. Trans. JIM 41 (2000)
    1104–1107.
    [11] A. Trovarelli, C. de Leitenburg, M. Boaro, G. Dolcetti, Catal. Today 50 (1999)
    353–367.
    [12] F. Zhou, X. Zhao, H. Xu, C. Yuan, J. Phys. Chem. C 111 (2007) 1651–1657.
    [13] C. Lin, J.D.C. Basil, R.M. Hunia, P.P. Bihuniak, US Patent 1994, 5316854.
    [14] A.S. Hamdy, Mater. Lett. 60 (2006) 2633–2637.
    [15] X. Zhong, Q. Li, J. Hu, Y. Lu, Corros. Sci. 50 (2008) 2304.
    [16] H. Inaba, H. Tagawa, Solid State Ionics 83 (1996) 1–16.
    [17] F. Zhou, X. Ni, Y. Zhang, H. Zheng, J. Colloid, J. Colloid Interface Sci. 307 (2007)135–138.
    [18] A. Corma, P. Atienzar, H. Gara, J.Y. Chane-Ching, Nat. Mater. 3 (2004) 394–397.
    [19] Keramidas, V. G., & White, W. B. (1973). The Journal of Chemical Physics, 59(3), 1561-1562.
    [20] Kim, D. J. (1989). Journal of the American Ceramic Society, 72(8), 1415-1421.
    [21] Axe, J. D. (1965). Physical Review, 139(4A), A1215.
    [22] Manning, P. S., Sirman, J. D., & Kilner, J. A. (1996). Solid State Ionics, 93(1-2), 125-132.
    [23] Yahiro, H., Eguchi, Y., Eguchi, K., & Arai, H. (1988).18(4), 527-531.
    [24] Song, X.-L., et al., The Chinese Journal of Nonferrous Metals, 2004. 11: p. 024.
    [25] Patsalas, P., et al., Physical Review B, 2003. 68(3): p. 035104.
    [26] Liu, Y., et al., Journal of Physics: Condensed Matter, 2008. 20(16): p. 165201.
    [27] Chikazumi, S. and C.D. Graham, Vol. 94. 2009: Oxford University Press on Demand.
    [28] Chen, X., et al., 2009. 20(11): p. 115606.
    [29]Engel, A. K., Fries, P., & Singer, W. (2001). Nature Reviews Neuroscience, 2(10), 704.
    [30] Hopfinger, J. B., Buonocore, M. H., & Mangun, G. R. (2000).Nature neuroscience, 3(3), 284.
    [31] Bar, M., Kassam, K. S., Ghuman, A. S., Boshyan, J., Schmid, A. M., Dale, A. M., ... & Halgren, E. (2006). Proceedings of the national academy of sciences, 103(2), 449-454
    [32] Cai, J., Ruffieux, P., Jaafar, R., Bieri, M., Braun, T., Blankenburg, S., ... & Müllen, K. (2010). Nature, 466(7305), 470.
    [33] Lu, W., & Lieber, C. M. (2010). In Nanoscience And Technology: A Collection of Reviews from Nature Journals (pp. 137-146).
    [34] Magasinski, A., Dixon, P., Hertzberg, B., Kvit, A., Ayala, J., & Yushin, G. (2010). Nature materials, 9(4), 353.
    [35] Guo, S., Arwin, H., Jacobsen, S. N., Järrendahl, K., & Helmersson, U. (1995). Journal of Applied physics, 77(10), 5369-5376.
    [36] Qizheng, C., Xiangting, D., Jinxian, W., & Mei, L. I. (2008).Journal of Rare earths, 26(5), 664-669
    [37] Morshed, A. H., Moussa, M. E., Bedair, S. M., Leonard, R., Liu, S. X., & El-Masry, N. (1997).Applied physics letters, 70(13), 1647-1649.
    [38] Zhitomirsky, I., & Petric, A. (2001). Ceramics International, 27(2), 149-155.
    [39] Keomany, D., Poinsignon, C., & Deroo, D. (1994). Solar Energy Materials and Solar Cells, 33(4), 429-441.
    [40] Paier, J., C. Penschke, and J. Sauer. Chemical reviews, 2013. 113(6): p. 3949-3985.
    [41] C. B. Fitzgerald, M. Venkatesan, L. S. Dorneles, R. Gunning, P. Stamenov, J. M.D. Coey, et al.hysical Review B, vol. 74, p. 115307, 09/12/ 2006.
    [42] Hunter, R. J. (2013). Zeta potential in colloid science: principles and applications (Vol. 2). Academic press.
    [43] Butler, M. A., & Ginley, D. S. (1978). Journal of the Electrochemical Society, 125(2), 228-232.
    [44] Huang, C. J., & Liu, J. C. (1999).. Water Research, 33(16), 3403-3412.
    [45] Patil, S., Sandberg, A., Heckert, E., Self, W., & Seal, S. (2007). Biomaterials, 28(31), 4600-4607.
    [46] Freitas, C., & Müller, R. H. (1998). International journal of pharmaceutics, 168(2), 221-229.
    [47] Holmes-Farley, S. R., Reamey, R. H., McCarthy, T. J., Deutch, J., & Whitesides, G. M. (1985).Langmuir, 1(6), 725-740.
    [48] Prasad, B. R., & Senapati, S. (2009).The Journal of Physical Chemistry B, 113(14), 4739-4743.
    [49] [36] Liang, H., Hong, Y., Zhu, C., Li, S., Chen, Y., Liu, Z., & Ye, D. (2013).Catalysis today, 201, 98-102.
    [50] Petrache, H. I., Zemb, T., Belloni, L., & Parsegian, V. A. (2006).Proceedings of the National Academy of Sciences, 103(21), 7982-7987
    [51] Grahame, D. C. (1947).Chemical reviews, 41(3), 441-501.
    [52] Kirby, B. J., & Hasselbrink Jr, E. F. (2004).Electrophoresis, 25(2), 187-202.
    [53] Warren, B.E., X-ray Diffraction. 1990: Courier Corporation.
    [54] Zhang, X., et al.,.Chemistry letters, 2006. 35(10): p. 1142-1143.
    [55] atthews, A. and D.S. Rickerby. 1991: Blackie Glasgow.
    [56]Koningsberger, D. and R. Prins , SEXAFS, and XANES. 1988.
    [57]Sayers, D.E., E.A. Stern, and F.W. Lytle. Physical review letters, 1971. 27(18): p. 1204.
    [58] Winick, H. and S. Doniach. 2012: Springer Science & Business Media.
    [59] Durham, P., et al. The EMBO journal, 1983. 2(9): p. 1441-1443.
    [60] Egerton, R.F. 2011: Springer Science & Business Media.
    [61] Keyse, R., Introduction to scanning transmission electron microscopy. 2018: Routledge.
    [62] 林智仁 and 羅聖全, 場發射穿透式電子顯微鏡簡介. 工業材料雜誌, 2003. 201: p. 90-98.
    [63] Hughes, M.P., Nanoelectromechanics in engineering and biology. 2002: CRC press.

    無法下載圖示 全文公開日期 2024/08/15 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE