簡易檢索 / 詳目顯示

研究生: HENNI SETIA NINGSIH
HENNI SETIA NINGSIH
論文名稱: 利用噴霧熱裂解法合成銀、鋅、銅及鐵單一及共摻雜β-三鈣磷酸鹽顆粒對其抗菌及抗癌性質之研究
Synthesis of single and co-doped Ag, Zn, Cu, and Fe β-tricalcium phosphate for antibacterial and anticancer properties using spray pyrolysis
指導教授: 施劭儒
Shao-Ju Shih
口試委員: 王丞浩
Chen-Hao Wang
周育任
Yu-Jen Chou
鍾仁傑
Ren-Jei Chung
陳錦毅
Chin-Yi Chen
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 149
中文關鍵詞: β-三鈣磷酸鹽噴霧熱裂解抗菌電子顯微鏡
外文關鍵詞: β-tricalcium phosphate, spray pyrolysis, antibacterial, electron microscopy
相關次數: 點閱:179下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • β-三鈣磷酸鹽 (β-tricalcium phosphate, β-TCP)是一個具有良好的化學穩定性、無毒性、高生物相容性及骨傳導性的生物材料,在骨科及牙科手術中常做為骨組織替代品使用。然而β-TCP 本身並不具抗菌及抗癌的性質。為了改善上述性質,本研究將開發以噴霧熱裂解法製備之摻雜雙金屬離子 (銀/鋅、銀/銅、銀/鐵) 的β-TCP粉體。
    本研究將使用X光繞射儀 (X-ray diffraction, XRD) 及 Rietveld 精算法分析 β-TCP 晶體結構中離子的置換情形;以掃描式電子顯微鏡 (Scanning electron microscopy, SEM) 及能量色散X射線譜 (X-ray energy dispersive spectroscopy, XEDS) 進行材料形貌觀測及成分組成鑑定;以高解析穿透式電子顯微鏡 (High resolution transmission electron microscopy, HRTEM) 進行材料奈米結構之鑑定;以X射線光電子能譜儀 (X-ray photoelectron spectroscopy, XPS) 進行離子種類之鑑定。在體外實驗部分,本研究將以大腸桿菌 (Escherichia coli) 進行抗菌實驗,並進行菌落計數法分析材料之抗菌能力;而於細胞實驗上,本研究將以MTT assay對正常組之MC3T3-E1細胞及癌細胞組之MG-63細胞進行相關生物學分析。
    根據晶體學之研究結果,本研究藉由波峰位置改變、晶體結構尺寸、晶格參數等數據證實摻雜之金屬離子確實置換於β-TCP的晶體結構中。此外、本研究亦顯示不同濃度及種類的金屬離子摻雜使β-TCP在大腸桿菌之實驗中具有不同抗菌強度。最後,雙離子置換之β-TCP對MC3T3-E1及MG-63細胞存活實驗的影響也將被探討。


    β-tricalcium phosphate (β-TCP) is a synthetic biomaterial that present as an ideal bone tissue substitutes in orthopedic and dental surgery from the standpoints of chemically stability, non-toxicity, high biocompatibility and osteoconductivity. However, β-TCP suffer from lacks of intrinsic antibacterial and anticancer properties. Therefore, to improve the above deficiencies, the incorporation of co-ionic (silver-zinc, silver-copper, and silver-iron) in β-TCP system using a spray pyrolysis method have been proposed in this thesis.
    X-ray diffraction (XRD) and Rietveld refinement were performed to explain the effect of ions substitution on the β-TCP lattice structure. The morphologies and chemical compositions were characterized using scanning electron microscopy (SEM) and X-ray energy dispersive spectroscopy (XEDS), respectively, whereas the high-resolution transmission electron microscopy (HRTEM) was employed to characterize the nanostructure. Moreover, the detail vision of ionic species was measured by X-ray photoelectron spectroscopy (XPS). On the other hand, the in-vitro antibacterial test was performed against Escherichia coli (E. coli) bacteria using colony count method. In addition, the in-vitro biological studies of substituted β-TCP were evaluated using MTT assay with MC3T3-E1 as normal cell and MG-63 as the cancer cell.
    The crystallographic studies were confirmed that metal ions were substituted within the crystal structure of β-TCP, as evidenced by the change in peak position, crystallite size, and lattice parameter. Furthermore, metal ions substituted β-TCP showed varying strengths of antibacterial properties against E.coli bacteria, which was ascribed to different type and substitution concentrations of metal ions. Finally, the effect of co-ionic substitution in β-TCP on the MC3T3-E1 and MG-63 cell survival were discussed.

    Contents Abstract ii 摘要 iii Acknowledgments iv Contents v List of Abbreviation vii List of Figures ix List of Tables xiii 1. Introduction and Literature review 1 1.1 Background of the study 1 1.2 Bone 3 1.2.1 Bone function 3 1.2.2 Bone structure 3 1.2.3 Bone cells 4 1.2.4 Bone remodeling 5 1.2.5 Ionic influence on bone mineralization 6 1.3 Biomaterial 8 1.4 Calcium phosphate 9 1.4.1 Hydroxyapatite (HA) 10 1.4.2 Beta-tricalcium phosphate (β-TCP) 10 1.5 Infection in prosthetics and implants 13 1.6 Bone cancer (Osteosarcoma) 14 1.7 Metal ions doped β-TCP 15 1.7.1 Influence of silver doped β-TCP (Ag-doped β-TCP) 17 1.7.2 Influence of zinc doped β-TCP (Zn-doped β-TCP) 19 1.7.3 Influence of copper doped β-TCP (Cu-doped β-TCP) 21 1.7.4 Influence of iron doped β-TCP (Fe-doped β-TCP) 22 1.8 Multi-ionic co-doped β-TCP 23 1.9 Synthesis of β-TCP 24 1.9.1 Wet precipitation method 24 1.9.2 Sol-gel method 24 1.9.3 Solid-state reaction method 25 1.9.4 Spray pyrolysis method 26 2. Characterization technique 28 2.1 X-Ray diffractometer (XRD) 28 2.2 Field Emission Scanning Electron Microscope (FESEM) 28 2.3 Transmission electron microscope (TEM) 28 2.4 Brunauer-Emmet-Teller (BET) 29 2.5 Magnetic properties 29 2.6 In-vitro antibacterial test 30 2.7 In-vitro cell viability 31 3. Preparation, characterization, and investigation of antibacterial silver-zinc co doped β-tricalcium phosphate by spray pyrolysis 33 3.1 Experimental procedure 36 3.1.1 Synthesis 36 3.1.2 Characterization 36 3.2 Results 39 3.3 Discussion 47 3.4 Summary 50 4. Preparation, characterization, and investigation of antibacterial and cell viability of silver-copper co-doped β-tricalcium phosphate by spray pyrolysis 51 4.1 Experimental procedure 54 4.1.1 Synthesis 54 4.1.2 Characterization 54 4.2 Results 58 4.3 Discussion 74 4.4 Summary 77 5. Preparation, characterization, and investigation of antibacterial and anticancer properties of silver-ferrite co-doped β-tricalcium phosphate by spray pyrolysis 78 5.1 Experimental procedure 80 5.1.1 Synthesis 80 5.1.2 Characterization 80 5.2 Results 83 5.3 Discussion 104 5.4 Summary 106 6. Conclusions 107 7. Future works 108 References 109

    [1] K.L. Brown, R.L. Cruess, Bone and cartilage transplantation in orthopaedic surgery. A review, JBJS, 64 (1982) 270-279.
    [2] E.M. Younger, M.W. Chapman, Morbidity at bone graft donor sites, J Orthop Trauma, 3 (1989) 192-195.
    [3] E.D. Arrington, W.J. Smith, H.G. Chambers, A.L. Bucknell, N.A. Davino, Complications of iliac crest bone graft harvesting, Clinical Orthopaedics and Related Research®, 329 (1996) 300-309.
    [4] C.J. Damien, J.R. Parsons, Bone graft and bone graft substitutes: a review of current technology and applications, Journal of applied biomaterials, 2 (1991) 187-208.
    [5] C. Oldani, A. Dominguez, Titanium as a Biomaterial for Implants, Recent advances in arthroplasty, 218 (2012) 149-162.
    [6] N. Eliaz, N. Metoki, Calcium phosphate bioceramics: a review of their history, structure, properties, coating technologies and biomedical applications, Materials, 10 (2017) 334.
    [7] S. Kotani, Y. Fujita, T. Kitsugi, T. Nakamura, T. Yamamuro, C. Ohtsuki, T. Kokubo, Bone bonding mechanism of β‐tricalcium phosphate, Journal of biomedical materials research, 25 (1991) 1303-1315.
    [8] D.E. Cutright, S.N. Bhaskar, J.M. Brady, L. Getter, W.R. Posey, Reaction of bone to tricalcium phosphate ceramic pellets, Oral Surgery, Oral Medicine, Oral Pathology, 33 (1972) 850-856.
    [9] L.G. Harris, R.G. Richards, Staphylococci and implant surfaces: a review, Injury, 37 (2006) S3-S14.
    [10] B. Singh, S. Kumar, N. Saha, B. Basu, R. Gupta, Phase stability of silver particles embedded calcium phosphate bioceramics, Bulletin of Materials Science, 38 (2015) 525-529.
    [11] R.K. Singh, M. Srivastava, N. Prasad, S. Awasthi, A. Dhayalan, S. Kannan, Iron doped β-Tricalcium phosphate: Synthesis, characterization, hyperthermia effect, biocompatibility and mechanical evaluation, Materials Science and Engineering: C, 78 (2017) 715-726.
    [12] E. Boanini, M. Gazzano, C. Nervi, M.R. Chierotti, K. Rubini, R. Gobetto, A. Bigi, Strontium and zinc substitution in β-tricalcium phosphate: An X-ray diffraction, solid state NMR and ATR-FTIR study, Journal of functional biomaterials, 10 (2019) 20.
    [13] B. Singh, A.K. Dubey, S. Kumar, N. Saha, B. Basu, R. Gupta, In vitro biocompatibility and antimicrobial activity of wet chemically prepared Ca10− xAgx (PO4) 6 (OH) 2 (0.0≤ x≤ 0.5) hydroxyapatites, Materials Science and Engineering: C, 31 (2011) 1320-1329.
    [14] G. Bacci, S. Ferrari, A. Longhi, D. Donati, M. Manfrini, S. Giacomini, A. Briccoli, C. Forni, S. Galletti, Nonmetastatic osteosarcoma of the extremity with pathologic fracture at presentation Local and systemic control by amputation or limb salvage after preoperative chemotherapy, Acta Orthopaedica Scandinavica, 74 (2003) 449-454.
    [15] N. Federman, N. Bernthal, F.C. Eilber, W.D. Tap, The multidisciplinary management of osteosarcoma, Current treatment options in oncology, 10 (2009) 82-93.
    [16] R.E. Turcotte, J.S. Wunder, M.H. Isler, R.S. Bell, N. Schachar, B.A. Masri, G. Moreau, A.M. Davis, Giant cell tumor of long bone: a Canadian Sarcoma Group study, Clinical Orthopaedics and Related Research®, 397 (2002) 248-258.
    [17] I. Drosse, E. Volkmer, R. Capanna, P.D. Biase, W. Mutschler, M. Schieker, Tissue engineering for bone defect healing: An update on a multi-component approach, Injury, 39 (2008) S9-S20.
    [18] S. Panseri, C. Cunha, T. D’Alessandro, M. Sandri, G. Giavaresi, M. Marcacci, C.T. Hung, A. Tampieri, Intrinsically superparamagnetic Fe-hydroxyapatite nanoparticles positively influence osteoblast-like cell behaviour, Journal of nanobiotechnology, 10 (2012) 1-10.
    [19] F. Korkusuz, Musculoskeletal research and basic science, Springer2016.
    [20] H. Amirazad, M. Dadashpour, N. Zarghami, Application of decellularized bone matrix as a bioscaffold in bone tissue engineering, Journal of Biological Engineering, 16 (2022) 1-18.
    [21] J.S. Khurana, Bone pathology, Springer Science & Business Media2009.
    [22] T. Gong, J. Xie, J. Liao, T. Zhang, S. Lin, Y. Lin, Nanomaterials and bone regeneration, Bone research, 3 (2015) 1-7.
    [23] M.N. Knight, K.D. Hankenson, Mesenchymal stem cells in bone regeneration, Advances in wound care, 2 (2013) 306-316.
    [24] K.H. Kraus, C. KIRKER‐HEAD, Mesenchymal stem cells and bone regeneration, Veterinary surgery, 35 (2006) 232-242.
    [25] C. Gay, V. Gilman, T. Sugiyama, Perspectives on osteoblast and osteoclast function, Poultry Science, 79 (2000) 1005-1008.
    [26] S. Omelon, J. Georgiou, Z.J. Henneman, L.M. Wise, B. Sukhu, T. Hunt, C. Wynnyckyj, D. Holmyard, R. Bielecki, M.D. Grynpas, Control of vertebrate skeletal mineralization by polyphosphates, PLoS One, 4 (2009) e5634.
    [27] D. Sommerfeldt, C. Rubin, Biology of bone and how it orchestrates the form and function of the skeleton, European Spine Journal, 10 (2001) S86-S95.
    [28] G. Göthlin, J. Ericsson, The osteoclast: review of ultrastructure, origin, and structure-function relationship, Clinical orthopaedics and related research, (1976) 201-231.
    [29] L.F. Bonewald, The amazing osteocyte, Journal of bone and mineral research, 26 (2011) 229-238.
    [30] E.M. Aarden, P.J. Nijweide, E.H. Burger, Function of osteocytes in bone, Journal of cellular biochemistry, 55 (1994) 287-299.
    [31] A.G. Robling, L.F. Bonewald, The osteocyte: new insights, Annual review of physiology, 82 (2020) 485-506.
    [32] J.B. Suzuki, C.E. Misch, Periodontal and maintenance complications, Misch's Avoiding Complications in Oral Implantology, Elsevier2018, pp. 771-826.
    [33] K. Matsuo, N. Irie, Osteoclast–osteoblast communication, Archives of biochemistry and biophysics, 473 (2008) 201-209.
    [34] G. Parker, Encyclopedia of materials: science and technology, (2001).
    [35] M. Hernandez-Avila, T. Gonzalez-Cossio, E. Palazuelos, I. Romieu, A. Aro, E. Fishbein, K.E. Peterson, H. Hu, Dietary and environmental determinants of blood and bone lead levels in lactating postpartum women living in Mexico City, Environmental Health Perspectives, 104 (1996) 1076-1082.
    [36] F. Bronner, Metals in bone: aluminum, boron, cadmium, chromium, lead, silicon, and strontium, Principles of bone biology, Elsevier2002, pp. 359-369.
    [37] J.P. Bilezikian, L.G. Raisz, T.J. Martin, Principles of bone biology, Academic press2008.
    [38] Y.L. Chang, C.M. Stanford, J.C. Keller, Calcium and phosphate supplementation promotes bone cell mineralization: Implications for hydroxyapatite (HA)‐enhanced bone formation, Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 52 (2000) 270-278.
    [39] M. Whyte, Alkaline phosphatase: physiological role explored in hypophosphatasia, Bone and mineral research/6, (1989) 175-218.
    [40] B.D. Ratner, Biomaterials science: An interdisciplinary endeavor, Biomaterials science, Elsevier1996, pp. 1-8.
    [41] J. Park, R.S. Lakes, Biomaterials: an introduction, Springer Science & Business Media2007.
    [42] J.M. Lane, E. Tomin, M.P. Bostrom, Biosynthetic bone grafting, Clinical Orthopaedics and Related Research®, 367 (1999) S107-S117.
    [43] C.N. Cornell, J.M. Lane, Current understanding of osteoconduction in bone regeneration, Clinical Orthopaedics and Related Research®, 355 (1998) S267-S273.
    [44] S. Desai, B. Bidanda, P. Bartolo, Metallic and ceramic biomaterials: current and future developments, Bio-Materials and Prototyping Applications in Medicine, Springer2008, pp. 1-14.
    [45] S. Dorozhkin, Current state of bioceramics, J. Ceram. Sci. Technol, 9 (2018) 353-370.
    [46] F.H. Albee, Studies in bone growth: triple calcium phosphate as a stimulus to osteogenesis, Annals of surgery, 71 (1920) 32.
    [47] E. Verron, I. Khairoun, J. Guicheux, J.-M. Bouler, Calcium phosphate biomaterials as bone drug delivery systems: a review, Drug discovery today, 15 (2010) 547-552.
    [48] M. Vallet-Regi, J.M. González-Calbet, Calcium phosphates as substitution of bone tissues, Progress in solid state chemistry, 32 (2004) 1-31.
    [49] S.V. Dorozhkin, Calcium orthophosphates in nature, biology and medicine, Materials, 2 (2009) 399-498.
    [50] D. Arcos, Calcium phosphate bioceramics, Bio‐Ceramics with Clinical Applications, (2014) 23-71.
    [51] S.V. Dorozhkin, Nanodimensional and nanocrystalline apatites and other calcium orthophosphates in biomedical engineering, biology and medicine, Materials, 2 (2009) 1975-2045.
    [52] D.Y. Suh, S.D. Boden, J. Louis-Ugbo, M. Mayr, H. Murakami, H.-S. Kim, A. Minamide, W.C. Hutton, Delivery of recombinant human bone morphogenetic protein-2 using a compression-resistant matrix in posterolateral spine fusion in the rabbit and in the non-human primate, Spine, 27 (2002) 353-360.
    [53] J. Sutter, H. McDowell, W.E. Brown, Solubility study of calcium hydrogen phosphate. Ion-pair formation, Inorganic Chemistry, 10 (1971) 1638-1643.
    [54] R. Tang, W. Wu, M. Haas, G.H. Nancollas, Kinetics of dissolution of β-tricalcium phosphate, Langmuir, 17 (2001) 3480-3485.
    [55] W. Wu, R. Tang, M. Haas, G.H. Nancollas, Constant Composition Dissolution of Mixed Phases: I. Synthetic Calcium Phosphates, Journal of colloid and interface science, 244 (2001) 347-352.
    [56] S.D. Boden, J.H. Schimandle, Biologic enhancement of spinal fusion, Spine, 20 (1995) 113S-123S.
    [57] R.V. da Silva, C.A. Bertran, E.Y. Kawachi, J.A. Camilli, Repair of Cranial Bone Defects With Calcium Phosphate Ceramic Implant or Autogenous Bone Graft, Journal of Craniofacial Surgery, 18 (2007) 281-286.
    [58] L. Zheng, F. Yang, H. Shen, X. Hu, C. Mochizuki, M. Sato, S. Wang, Y. Zhang, The effect of composition of calcium phosphate composite scaffolds on the formation of tooth tissue from human dental pulp stem cells, Biomaterials, 32 (2011) 7053-7059.
    [59] A. Mina, A. Castaño, J. Caicedo, H. Caicedo, Y. Aguilar, Determination of physical properties for β-TCP+ chitosan biomaterial obtained on metallic 316L substrates, Materials Chemistry and Physics, 160 (2015) 296-307.
    [60] B. Rai, M.E. Oest, K.M. Dupont, K.H. Ho, S.H. Teoh, R.E. Guldberg, Combination of platelet‐rich plasma with polycaprolactone‐tricalcium phosphate scaffolds for segmental bone defect repair, Journal of biomedical materials research Part A, 81 (2007) 888-899.
    [61] H. Yokozeki, T. Hayashi, T. Nakagawa, H. Kurosawa, K. Shibuya, K. Ioku, Influence of surface microstructure on the reaction of the active ceramics in vivo, Journal of Materials Science: Materials in Medicine, 9 (1998) 381-384.
    [62] H. Lu, Y. Zhou, Y. Ma, L. Xiao, W. Ji, Y. Zhang, X. Wang, Current Application of Beta-Tricalcium Phosphate in Bone Repair and Its Mechanism to Regulate Osteogenesis, Frontiers in Materials, 8 (2021).
    [63] X. Li, A. Ito, Y. Sogo, X. Wang, R. LeGeros, Solubility of Mg-containing β-tricalcium phosphate at 25 C, Acta biomaterialia, 5 (2009) 508-517.
    [64] M. Yashima, A. Sakai, T. Kamiyama, A. Hoshikawa, Crystal structure analysis of β-tricalcium phosphate Ca3 (PO4) 2 by neutron powder diffraction, Journal of Solid State Chemistry, 175 (2003) 272-277.
    [65] F.H. Lin, C.J. Liao, K.S. Chen, J.S. Sun, Preparation of high-temperature stabilized β-tricalcium phosphate by heating deficient hydroxyapatite with Na4P2O7· 10H2O addition, Biomaterials, 19 (1998) 1101-1107.
    [66] K. Yoshida, H. Hyuga, N. Kondo, H. Kita, M. Sasaki, M. Mitamura, K. Hashimoto, Y. Toda, Substitution model of monovalent (Li, Na, and K), divalent (Mg), and trivalent (Al) metal ions for β‐tricalcium phosphate, Journal of the American Ceramic Society, 89 (2006) 688-690.
    [67] N. Matsumoto, K. Sato, K. Yoshida, K. Hashimoto, Y. Toda, Preparation and characterization of β-tricalcium phosphate co-doped with monovalent and divalent antibacterial metal ions, Acta Biomaterialia, 5 (2009) 3157-3164.
    [68] S. Afewerki, N. Bassous, S. Harb, C. Palo-Nieto, G.U. Ruiz-Esparza, F.R. Marciano, T.J. Webster, A.S.A. Furtado, A.O. Lobo, Advances in dual functional antimicrobial and osteoinductive biomaterials for orthopaedic applications, Nanomedicine: Nanotechnology, Biology and Medicine, 24 (2020) 102143.
    [69] M. Vallet‐Regí, D. Lozano, B. González, I. Izquierdo‐Barba, Biomaterials against bone infection, Advanced Healthcare Materials, 9 (2020) 2000310.
    [70] H. Winkler, Treatment of chronic orthopaedic infection, EFORT Open Reviews, 2 (2017) 110-116.
    [71] R.O. Darouiche, Treatment of infections associated with surgical implants, New England Journal of Medicine, 350 (2004) 1422-1429.
    [72] B. Li, T.J. Webster, Bacteria antibiotic resistance: New challenges and opportunities for implant‐associated orthopedic infections, Journal of Orthopaedic Research®, 36 (2018) 22-32.
    [73] M. Ribeiro, F.J. Monteiro, M.P. Ferraz, Infection of orthopedic implants with emphasis on bacterial adhesion process and techniques used in studying bacterial-material interactions, Biomatter, 2 (2012) 176-194.
    [74] Y. Cheng, L. Huang, K. Lee, J. Xu, M. Zheng, S. Kumta, Bisphosphonates induce apoptosis of stromal tumor cells in giant cell tumor of bone, Calcified tissue international, 75 (2004) 71-77.
    [75] A. Jordan, R. Scholz, K. Maier-Hauff, F.K. van Landeghem, N. Waldoefner, U. Teichgraeber, J. Pinkernelle, H. Bruhn, F. Neumann, B. Thiesen, The effect of thermotherapy using magnetic nanoparticles on rat malignant glioma, Journal of neuro-oncology, 78 (2006) 7-14.
    [76] F.R. Li, W.H. Yan, Y.H. Guo, H. Qi, H.X. Zhou, Preparation of carboplatin-Fe@ C-loaded chitosan nanoparticles and study on hyperthermia combined with pharmacotherapy for liver cancer, International Journal of Hyperthermia, 25 (2009) 383-391.
    [77] A.A. Luderer, N.F. Borrelli, J.N. Panzarino, G.R. Mansfield, D.M. Hess, J.L. Brown, E.H. Barnett, E.W. Hahn, Glass-ceramic-mediated, magnetic-field-induced localized hyperthermia: response of a murine mammary carcinoma, Radiation Research, 94 (1983) 190-198.
    [78] B. Hildebrandt, P. Wust, O. Ahlers, A. Dieing, G. Sreenivasa, T. Kerner, R. Felix, H. Riess, The cellular and molecular basis of hyperthermia, Critical reviews in oncology/hematology, 43 (2002) 33-56.
    [79] B. Eppink, P.M. Krawczyk, J. Stap, R. Kanaar, Hyperthermia-induced DNA repair deficiency suggests novel therapeutic anti-cancer strategies, International journal of hyperthermia, 28 (2012) 509-517.
    [80] J. Zhang, S. Zhao, Y. Zhu, Y. Huang, M. Zhu, C. Tao, C. Zhang, Three-dimensional printing of strontium-containing mesoporous bioactive glass scaffolds for bone regeneration, Acta biomaterialia, 10 (2014) 2269-2281.
    [81] L.E. Ritacco, F.E. Milano, G.L. Farfalli, M.A. Ayerza, D.L. Muscolo, L.A. Aponte-Tinao, Accuracy of 3-D planning and navigation in bone tumor resection, Orthopedics, 36 (2013) e942-e950.
    [82] F.M. Klenke, D.E. Wenger, C.Y. Inwards, P.S. Rose, F.H. Sim, Recurrent giant cell tumor of long bones: analysis of surgical management, Clinical Orthopaedics and Related Research®, 469 (2011) 1181-1187.
    [83] M. Balke, H. Ahrens, A. Streitbuerger, G. Koehler, W. Winkelmann, G. Gosheger, J. Hardes, Treatment options for recurrent giant cell tumors of bone, Journal of cancer research and clinical oncology, 135 (2009) 149-158.
    [84] Y. Liu, M. Zhang, W. Bu, Bioactive nanomaterials for ion‐interference therapy, View, 1 (2020).
    [85] S. Li, L. Shao, T. Xu, X. Jiang, G. Yang, L. Dong, An indispensable tool: Exosomes play a role in therapy for radiation damage, Biomedicine & Pharmacotherapy, 137 (2021) 111401.
    [86] I. Mayer, F. Cuisinier, S. Gdalya, I. Popov, TEM study of the morphology of Mn2+-doped calcium hydroxyapatite and β-tricalcium phosphate, Journal of inorganic biochemistry, 102 (2008) 311-317.
    [87] R. Enderle, F. Götz-Neunhoeffer, M. Göbbels, F.A. Müller, P. Greil, Influence of magnesium doping on the phase transformation temperature of β-TCP ceramics examined by Rietveld refinement, Biomaterials, 26 (2005) 3379-3384.
    [88] M. Gallo, B. Le Gars Santoni, T. Douillard, F. Zhang, L. Gremillard, S. Dolder, W. Hofstetter, S. Meille, M. Bohner, J. Chevalier, S. Tadier, Effect of grain orientation and magnesium doping on β-tricalcium phosphate resorption behavior, Acta Biomaterialia, 89 (2019) 391-402.
    [89] M. Tohidnezhad, Y. Kubo, P. Lichte, T. Heigl, D. Roch, N. Barahmand Pour, C. Bergmann, T.T. Sönmez, J.V.P. Hock, A. Fragoulis, F. Gremse, S. Rosenhain, A. Slowik, M. Bienert, N. Kweider, C.J. Wruck, H. Jahr, F. Hildebrand, H.C. Pape, S. Neuß, H. Fischer, T. Pufe, Effects of Strontium-Doped β-Tricalcium Scaffold on Longitudinal Nuclear Factor-Kappa Beta and Vascular Endothelial Growth Factor Receptor-2 Promoter Activities during Healing in a Murine Critical-Size Bone Defect Model, International Journal of Molecular Sciences, 21 (2020) 3208.
    [90] C.Q. Zhao, X.C. Xu, Y.J. Lu, S.Q. Wu, Z.Y. Xu, T.T. Huang, J.X. Lin, Doping lithium element to enhance compressive strength of β-TCP scaffolds manufactured by 3D printing for bone tissue engineering, Journal of Alloys and Compounds, 814 (2020) 152327.
    [91] J. Yuan, B. Wang, C. Han, X. Huang, H. Xiao, X. Lu, J. Lu, D. Zhang, F. Xue, Y. Xie, Nanosized-Ag-doped porous β-tricalcium phosphate for biological applications, Materials Science and Engineering: C, 114 (2020) 111037.
    [92] A.C. Tas, S.B. Bhaduri, S. Jalota, Preparation of Zn-doped β-tricalcium phosphate (β-Ca3 (PO4) 2) bioceramics, Materials Science and Engineering: C, 27 (2007) 394-401.
    [93] S. Kannan, F. Goetz‐Neunhoeffer, J. Neubauer, J.M. Ferreira, Synthesis and structure refinement of zinc‐doped β‐tricalcium phosphate powders, Journal of the American Ceramic Society, 92 (2009) 1592-1595.
    [94] K. Kawabata, T. Yamamoto, A. Kitada, Substitution mechanism of Zn ions in β-tricalcium phosphate, Physica B: Condensed Matter, 406 (2011) 890-894.
    [95] S. Gomes, A. Kaur, J.-M. Grenèche, J.-M. Nedelec, G. Renaudin, Atomic scale modeling of iron-doped biphasic calcium phosphate bioceramics, Acta Biomaterialia, 50 (2017) 78-88.
    [96] S. Gomes, C. Vichery, S. Descamps, H. Martinez, A. Kaur, A. Jacobs, J.-M. Nedelec, G. Renaudin, Cu-doping of calcium phosphate bioceramics: From mechanism to the control of cytotoxicity, Acta Biomaterialia, 65 (2018) 462-474.
    [97] I. Fadeeva, M. Gafurov, I. Kiiaeva, S. Orlinskii, L. Kuznetsova, Y. Filippov, A. Fomin, G. Davydova, I. Selezneva, S. Barinov, Tricalcium phosphate ceramics doped with silver, copper, zinc, and iron (III) ions in concentrations of less than 0.5 wt.% for bone tissue regeneration, BioNanoScience, 7 (2017) 434-438.
    [98] I. Fadeeva, M. Gafurov, Y. Filippov, G. Davydova, I. Savintseva, A. Fomin, N. Petrakova, O. Antonova, L. Akhmetov, B. Gabbasov, Copper-substituted tricalcium phosphates, Doklady Chemistry, Springer, 2016, pp. 384-387.
    [99] S. Liu, C. Fan, F. Jin, L. Zhao, K. Dai, J. Lu, Preparation and Antibacterial Activities of Porous Silver-doped β-Tricalcium Phosphate Bioceramics, International Journal of Applied Ceramic Technology, 12 (2013) 294-299.
    [100] P. Han, M. Xu, J. Chang, N. Chakravorty, C. Wu, Y. Xiao, Lithium release from β-tricalcium phosphate inducing cementogenic and osteogenic differentiation of both hPDLCs and hBMSCs, Biomaterials science, 2 (2014) 1230-1243.
    [101] A. Tampieri, T. D’Alessandro, M. Sandri, S. Sprio, E. Landi, L. Bertinetti, S. Panseri, G. Pepponi, J. Goettlicher, M. Bañobre-López, Intrinsic magnetism and hyperthermia in bioactive Fe-doped hydroxyapatite, Acta biomaterialia, 8 (2012) 843-851.
    [102] A. Sukhanova, S. Bozrova, P. Sokolov, M. Berestovoy, A. Karaulov, I. Nabiev, Dependence of Nanoparticle Toxicity on Their Physical and Chemical Properties, Nanoscale Research Letters, 13 (2018).
    [103] M. Godoy-Gallardo, U. Eckhard, L.M. Delgado, Y.J.D. de Roo Puente, M. Hoyos-Nogués, F.J. Gil, R.A. Perez, Antibacterial approaches in tissue engineering using metal ions and nanoparticles: From mechanisms to applications, Bioactive Materials, 6 (2021) 4470-4490.
    [104] E. Bosch-Rué, L. Diez-Tercero, B. Giordano-Kelhoffer, L.M. Delgado, B.M. Bosch, M. Hoyos-Nogués, M.A. Mateos-Timoneda, P.A. Tran, F.J. Gil, R.A. Perez, Biological Roles and Delivery Strategies for Ions to Promote Osteogenic Induction, Frontiers in Cell and Developmental Biology, 8 (2021).
    [105] L. Crémet, S. Corvec, P. Bémer, L. Bret, C. Lebrun, B. Lesimple, A.-F. Miegeville, A. Reynaud, D. Lepelletier, N. Caroff, Orthopaedic-implant infections by Escherichia coli: Molecular and phenotypic analysis of the causative strains, Journal of Infection, 64 (2012) 169-175.
    [106] J. Hardes, H. Ahrens, C. Gebert, A. Streitbuerger, H. Buerger, M. Erren, A. Gunsel, C. Wedemeyer, G. Saxler, W. Winkelmann, Lack of toxicological side-effects in silver-coated megaprostheses in humans, Biomaterials, 28 (2007) 2869-2875.
    [107] G. Gosheger, J. Hardes, H. Ahrens, A. Streitburger, H. Buerger, M. Erren, A. Gunsel, F.H. Kemper, W. Winkelmann, C. Von Eiff, Silver-coated megaendoprostheses in a rabbit model-an analysis of the infection rate and toxicological side effects, Biomaterials, 25 (2004) 5547-5556.
    [108] A. Simchi, E. Tamjid, F. Pishbin, A. Boccaccini, Recent progress in inorganic and composite coatings with bactericidal capability for orthopaedic applications, Nanomedicine: Nanotechnology, Biology and Medicine, 7 (2011) 22-39.
    [109] S. Hoover, S. Tarafder, A. Bandyopadhyay, S. Bose, Silver doped resorbable tricalcium phosphate scaffolds for bone graft applications, Materials Science and Engineering: C, 79 (2017) 763-769.
    [110] O. Gokcekaya, K. Ueda, K. Ogasawara, H. Kanetaka, T. Narushima, In vitro evaluation of Ag-containing calcium phosphates: Effectiveness of Ag-incorporated β-tricalcium phosphate, Materials Science and Engineering: C, 75 (2017) 926-933.
    [111] G. Socol, M. Socol, L. Sima, S. Petrescu, M. Enculescu, F. Sima, M. Miroiu, G. Popescu-Pelin, N. Stefan, R. Cristescu, Combinatorial pulsed laser deposition of Ag-containing calcium phosphate coatings, Dig. J. Nanomat. Biostruct, 7 (2012) 563-576.
    [112] P.N. Lim, L. Chang, E. San Thian, Development of nanosized silver-substituted apatite for biomedical applications: A review, Nanomedicine: Nanotechnology, Biology and Medicine, 11 (2015) 1331-1344.
    [113] O. Gokcekaya, K. Ueda, T. Narushima, T. Nakano, Using HAADF-STEM for atomic-scale evaluation of incorporation of antibacterial Ag atoms in a β-tricalcium phosphate structure, Nanoscale, 12 (2020) 16596-16604.
    [114] H.J. Seo, Y.E. Cho, T. Kim, H.I. Shin, I.S. Kwun, Zinc may increase bone formation through stimulating cell proliferation, alkaline phosphatase activity and collagen synthesis in osteoblastic MC3T3-E1 cells, Nutrition research and practice, 4 (2010) 356-361.
    [115] M. Hashizume, M. Yamaguchi, Stimulatory effect of β-alanyl-L-histidinato zinc on cell proliferation is dependent on protein synthesis in osteoblastic MC3T3-E1 cells, Molecular and cellular biochemistry, 122 (1993) 59-64.
    [116] A. Tarushi, G. Psomas, C.P. Raptopoulou, D.P. Kessissoglou, Zinc complexes of the antibacterial drug oxolinic acid: structure and DNA-binding properties, Journal of inorganic biochemistry, 103 (2009) 898-905.
    [117] K. Yusa, O. Yamamoto, M. Fukuda, S. Koyota, Y. Koizumi, T. Sugiyama, In vitro prominent bone regeneration by release zinc ion from Zn-modified implant, Biochemical and biophysical research communications, 412 (2011) 273-278.
    [118] A. Bigi, E. Foresti, M. Gandolfi, M. Gazzano, N. Roveri, Isomorphous substitutions in β-tricalcium phosphate: the different effects of zinc and strontium, Journal of Inorganic Biochemistry, 66 (1997) 259-265.
    [119] C. Ergun, T.J. Webster, R. Bizios, R.H. Doremus, Hydroxylapatite with substituted magnesium, zinc, cadmium, and yttrium. I. Structure and microstructure, Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 59 (2002) 305-311.
    [120] V. Tiwari, N. Mishra, K. Gadani, P.S. Solanki, N. Shah, M. Tiwari, Mechanism of anti-bacterial activity of zinc oxide nanoparticle against carbapenem-resistant Acinetobacter baumannii, Frontiers in microbiology, 9 (2018) 1218.
    [121] V. Graziani, M. Fosca, A.A. Egorov, Y.V. Zobkov, A.Y. Fedotov, A.E. Baranchikov, M. Ortenzi, R. Caminiti, V.S. Komlev, J.V. Rau, Zinc-releasing calcium phosphate cements for bone substitute materials, Ceramics International, 42 (2016) 17310-17316.
    [122] A. Turlybekuly, A.D. Pogrebnjak, L.F. Sukhodub, L.B. Sukhodub, A.S. Kistaubayeva, I.S. Savitskaya, D.H. Shokatayeva, O.V. Bondar, Z.K. Shaimardanov, S.V. Plotnikov, B.H. Shaimardanova, I. Digel, Synthesis, characterization, in vitro biocompatibility and antibacterial properties study of nanocomposite materials based on hydroxyapatite-biphasic ZnO micro- and nanoparticles embedded in Alginate matrix, Materials Science and Engineering: C, 104 (2019) 109965.
    [123] F.N.S. Raja, T. Worthington, M.A. Isaacs, K.S. Rana, R.A. Martin, The antimicrobial efficacy of zinc doped phosphate-based glass for treating catheter associated urinary tract infections, Materials Science and Engineering: C, 103 (2019) 109868.
    [124] T.J. Webster, I. Seil, Antimicrobial applications of nanotechnology: methods and literature, International Journal of Nanomedicine, (2012) 2767.
    [125] Z. Zhang, D. Liu, Z. Chen, X. He, X. Li, X. Sun, Fabrication, in vitro and in vivo properties of β-TCP/Zn composites, Journal of Alloys and Compounds, 913 (2022) 165223.
    [126] M. Calasans-Maia, J. Calasans-Maia, S. Santos, E. Mavropoulos, M. Farina, I. Lima, R.T. Lopes, A. Rossi, J.M. Granjeiro, Short-term in vivo evaluation of zinc-containing calcium phosphate using a normalized procedure, Materials Science and Engineering: C, 41 (2014) 309-319.
    [127] N.J. Lakhkar, I.-H. Lee, H.-W. Kim, V. Salih, I.B. Wall, J.C. Knowles, Bone formation controlled by biologically relevant inorganic ions: role and controlled delivery from phosphate-based glasses, Advanced drug delivery reviews, 65 (2013) 405-420.
    [128] J. Barralet, U. Gbureck, P. Habibovic, E. Vorndran, C. Gerard, C.J. Doillon, Angiogenesis in calcium phosphate scaffolds by inorganic copper ion release, Tissue Engineering Part A, 15 (2009) 1601-1609.
    [129] W. Li, C.-F. Li, F. Lang, J. Jiu, M. Ueshima, H. Wang, Z.-Q. Liu, K. Suganuma, Self-catalyzed copper–silver complex inks for low-cost fabrication of highly oxidation-resistant and conductive copper–silver hybrid tracks at a low temperature below 100° C, Nanoscale, 10 (2018) 5254-5263.
    [130] I.V. Fadeeva, B.I. Lazoryak, G.A. Davidova, F.F. Murzakhanov, B.F. Gabbasov, N.V. Petrakova, M. Fosca, S.M. Barinov, G. Vadalà, V. Uskoković, Antibacterial and cell-friendly copper-substituted tricalcium phosphate ceramics for biomedical implant applications, Materials Science and Engineering: C, 129 (2021) 112410.
    [131] K. Spaeth, F. Goetz-Neunhoeffer, K. Hurle, Cu2+ doped β-tricalcium phosphate: solid solution limit and crystallographic characterization by rietveld refinement, Journal of Solid State Chemistry, 285 (2020) 121225.
    [132] I. Burghardt, F. Lüthen, C. Prinz, B. Kreikemeyer, C. Zietz, H.-G. Neumann, J. Rychly, A dual function of copper in designing regenerative implants, Biomaterials, 44 (2015) 36-44.
    [133] J.P. Rodríguez, S. Rios, M. Gonzalez, Modulation of the proliferation and differentiation of human mesenchymal stem cells by copper, Journal of cellular biochemistry, 85 (2002) 92-100.
    [134] N. Abbaspour, R. Hurrell, R. Kelishadi, Review on iron and its importance for human health, Journal of research in medical sciences: the official journal of Isfahan University of Medical Sciences, 19 (2014) 164.
    [135] S. Katsumata, R. Katsumata-Tsuboi, M. Uehara, K. Suzuki, Severe iron deficiency decreases both bone formation and bone resorption in rats, The Journal of nutrition, 139 (2009) 238-243.
    [136] Y. Li, B. Bai, Y. Zhang, Expression of iron-regulators in the bone tissue of rats with and without iron overload, Biometals, 31 (2018) 749-757.
    [137] W. Xiao, F. Beibei, S. Guangsi, J. Yu, Z. Wen, H. Xi, X. Youjia, Iron overload increases osteoclastogenesis and aggravates the effects of ovariectomy on bone mass, J Endocrinol, 226 (2015) 121-134.
    [138] S. Vahabzadeh, S. Bose, Effects of iron on physical and mechanical properties, and osteoblast cell interaction in β-tricalcium phosphate, Annals of biomedical engineering, 45 (2017) 819-828.
    [139] A. Adamiano, V.M. Wu, F. Carella, G. Lamura, F. Canepa, A. Tampieri, M. Iafisco, V. Uskoković, Magnetic calcium phosphates nanocomposites for the intracellular hyperthermia of cancers of bone and brain, Nanomedicine, 14 (2019) 1267-1289.
    [140] S. Samani, S. Hossainalipour, M. Tamizifar, H. Rezaie, In vitro antibacterial evaluation of sol–gel‐derived Zn‐, Ag‐, and (Zn+Ag)‐doped hydroxyapatite coatings against methicillin‐resistant Staphylococcus aureus, Journal of Biomedical Materials Research Part A, 101 (2013) 222-230.
    [141] M. Roy, S. Bose, Osteoclastogenesis and osteoclastic resorption of tricalcium phosphate: Effect of strontium and magnesium doping, Journal of biomedical materials research Part A, 100 (2012) 2450-2461.
    [142] R.K. Singh, S. Kannan, Synthesis, Structural analysis, Mechanical, antibacterial and Hemolytic activity of Mg2+ and Cu2+ co-substitutions in β-Ca3(PO4)2, Materials Science and Engineering: C, 45 (2014) 530-538.
    [143] Y. Wang, X. Yuan, J. Ye, F. He, Effects of zinc/gallium dual doping on the physicochemical properties and cell response of 3D printed β-tricalcium phosphate ceramic scaffolds, Ceramics International, (2022).
    [144] M. Mabrouk, S.M. Mousa, W.A.A. ElGhany, M.T. Abo-elfadl, G.T. El-Bassyouni, Bioactivity and cell viability of Ag+- and Zr4+-co-doped biphasic calcium phosphate, Applied Physics A, 127 (2021) 948.
    [145] L. Stipniece, I. Skadins, M. Mosina, Silver- and/or titanium-doped β-tricalcium phosphate bioceramic with antibacterial activity against Staphylococcus aureus, Ceramics International, 48 (2022) 10195-10201.
    [146] R. Singh, M. Srivastava, N. Prasad, S. Awasthi, A.K. Dhayalan, S. Kannan, Structural analysis and magnetic induced hyperthermia of Fe3+ and Mn2+ substituted β-Ca3(PO4)2, New Journal of Chemistry, 41 (2017) 12879-12891.
    [147] M. Jarcho, R. Salsbury, M. Thomas, R. Doremus, Synthesis and fabrication of β-tricalcium phosphate (whitlockite) ceramics for potential prosthetic applications, Journal of Materials Science, 14 (1979) 142-150.
    [148] M. Nor, M.M. Ridzuan, Z.A. Ahmad, Synthesis and characterization of β-Tricalcium phosphate ceramic via sol-gel method, Journal of Nuclear science, 6 (2009).
    [149] K.P. Sanosh, M.C. Chu, A. Balakrishnan, T.N. Kim, S.J. Cho, Sol–gel synthesis of pure nano sized β-tricalcium phosphate crystalline powders, Current Applied Physics, 10 (2010) 68-71.
    [150] J. Zhang, J. Guo, S. Li, B. Song, K. Yao, Synthesis of β-tricalcium phosphate using sol-gel self-propagating combustion method, Frontiers of chemistry in China, 3 (2008) 451-453.
    [151] S. Kweh, K. Khor, P. Cheang, The production and characterization of hydroxyapatite (HA) powders, Journal of Materials Processing Technology, 89 (1999) 373-377.
    [152] M. Bohner, J. Lemaı̂tre, T.A. Ring, Kinetics of dissolution of β-tricalcium phosphate, Journal of colloid and interface science, 190 (1997) 37-48.
    [153] K.S. TenHuisen, P.W. Brown, Phase Evolution during the Formation of α‐Tricalcium Phosphate, Journal of the American Ceramic Society, 82 (1999) 2813-2818.
    [154] J.S. Cho, D.S. Jung, J.M. Han, Y.C. Kang, Nano-sized α and β-TCP powders prepared by high temperature flame spray pyrolysis, Materials Science and Engineering: C, 29 (2009) 1288-1292.
    [155] M. Aizawa, T. Hanazawa, K. Itatani, F. Howell, A. Kishioka, Characterization of hydroxyapatite powders prepared by ultrasonic spray-pyrolysis technique, Journal of materials science, 34 (1999) 2865-2873.
    [156] J.S. Cho, D.S. Jung, J.M. Han, Y.C. Kang, Spherical shape hydroxyapatite powders prepared by flame spray pyrolysis, Journal of Ceramic Processing Research, 9 (2008) 348-352.
    [157] J.S. Cho, Y.C. Kang, Nano-sized hydroxyapatite powders prepared by flame spray pyrolysis, Journal of Alloys and Compounds, 464 (2008) 282-287.
    [158] M. Fathi, A. Hanifi, V. Mortazavi, Preparation and bioactivity evaluation of bone-like hydroxyapatite nanopowder, Journal of materials processing technology, 202 (2008) 536-542.
    [159] H. Zhou, J. Lee, Nanoscale hydroxyapatite particles for bone tissue engineering, Acta biomaterialia, 7 (2011) 2769-2781.
    [160] K.D. Groot, Clinical applications of calcium phosphate biomaterials: a review, Ceramics International, 19 (1993) 363-366.
    [161] K.D. Groot, Effect of porosity and physicochemical properties on the stability, resorption, and strength of calcium phosphate ceramics, Annals of the New York Academy of Sciences, 523 (1988) 227-233.
    [162] J. Lu, M. Descamps, J. Dejou, G. Koubi, P. Hardouin, J. Lemaitre, J.P. Proust, The biodegradation mechanism of calcium phosphate biomaterials in bone, Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 63 (2002) 408-412.
    [163] Ž. Radovanović, B. Jokić, D. Veljović, S. Dimitrijević, V. Kojić, R. Petrović, D. Janaćković, Antimicrobial activity and biocompatibility of Ag+-and Cu2+-doped biphasic hydroxyapatite/α-tricalcium phosphate obtained from hydrothermally synthesized Ag+-and Cu2+-doped hydroxyapatite, Applied surface science, 307 (2014) 513-519.
    [164] L.-J. Fuh, Y.-J. Huang, W.-C. Chen, D.-J. Lin, Preparation of micro-porous bioceramic containing silicon-substituted hydroxyapatite and beta-tricalcium phosphate, Materials Science and Engineering: C, 75 (2017) 798-806.
    [165] H.v.d. Belt, D. Neut, W. Schenk, J.R.v. Horn, H.C.v.d. Mei, H.J. Busscher, Infection of orthopedic implants and the use of antibiotic-loaded bone cements: a review, Acta Orthopaedica Scandinavica, 72 (2001) 557-571.
    [166] W. Chen, S. Oh, A. Ong, N. Oh, Y. Liu, H. Courtney, M. Appleford, J. Ong, Antibacterial and osteogenic properties of silver‐containing hydroxyapatite coatings produced using a sol gel process, Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 82 (2007) 899-906.
    [167] N. Iqbal, M.R.A. Kadir, N.A.N.N. Malek, N.H. Mahmood, M.R. Murali, T. Kamarul, Rapid microwave assisted synthesis and characterization of nanosized silver-doped hydroxyapatite with antibacterial properties, Materials letters, 89 (2012) 118-122.
    [168] M. Surmeneva, A. Lapanje, E. Chudinova, A. Ivanova, A. Koptyug, K. Loza, O. Prymak, M. Epple, F. Ennen-Roth, M. Ulbricht, Decreased bacterial colonization of additively manufactured Ti6Al4V metallic scaffolds with immobilized silver and calcium phosphate nanoparticles, Applied Surface Science, 480 (2019) 822-829.
    [169] M. Otsuka, S. Marunaka, Y. Matsuda, A. Ito, P. Layrolle, H. Naito, N. Ichinose, Calcium level‐responsive in‐vitro zinc release from zinc containing tricalcium phosphate (ZnTCP), Journal of biomedical materials research, 52 (2000) 819-824.
    [170] K. Yoshida, N. Kondo, H. Kita, M. Mitamura, K. Hashimoto, Y. Toda, Effect of substitutional monovalent and divalent metal ions on mechanical properties of β‐tricalcium phosphate, Journal of the American Ceramic Society, 88 (2005) 2315-2318.
    [171] T. Hacioglu, A. Tezcaner, S. Abbas, Z. Evis, Preparation and Characteristics of Co-Doped Hydroxyapatite Biomimetic Coatings on Pretreated Ti6Al4V Alloy, Surface Review and Letters, 27 (2020) 2050012.
    [172] Z. Nazemi, M. Haghbin Nazarpak, M. Mehdikhani‐Nahrkhalaji, H. Staji, M.M. Kalani, Synthesis, characterisation and antibacterial effects of sol–gel derived biphasic calcium phosphate nanopowders, Micro & Nano Letters, 9 (2014) 403-406.
    [173] R. Ghosh, R. Sarkar, Synthesis and characterization of sintered beta-tricalcium phosphate: A comparative study on the effect of preparation route, Materials Science and Engineering: C, 67 (2016) 345-352.
    [174] C.Y. Chen, Y.R. Lyu, C.Y. Su, H.M. Lin, C.K. Lin, Characterization of spray pyrolyzed manganese oxide powders deposited by electrophoretic deposition technique, Surface and Coatings Technology, 202 (2007) 1277-1281.
    [175] S.J. Shih, I.C. Chien, Preparation and characterization of nanostructured silver particles by one-step spray pyrolysis, Powder technology, 237 (2013) 436-441.
    [176] T.T. Kodas, T.T. Kodas, M.J. Hampden-Smith, Aerosol processing of materials, Wiley-Vch1999.
    [177] S.J. Shih, W.L. Tzeng, R. Jatnika, C.J. Shih, K.B. Borisenko, Control of Ag nanoparticle distribution influencing bioactive and antibacterial properties of Ag‐doped mesoporous bioactive glass particles prepared by spray pyrolysis, Journal of Biomedical Materials Research Part B: Applied Biomaterials, 103 (2015) 899-907.
    [178] E. Thian, T. Konishi, Y. Kawanobe, P. Lim, C. Choong, B. Ho, M. Aizawa, Zinc-substituted hydroxyapatite: a biomaterial with enhanced bioactivity and antibacterial properties, Journal of Materials Science: Materials in Medicine, 24 (2013) 437-445.
    [179] G.L. Messing, S.C. Zhang, G.V. Jayanthi, Ceramic powder synthesis by spray pyrolysis, Journal of the American Ceramic Society, 76 (1993) 2707-2726.
    [180] M. Chen, L.-Y. Wang, J.-T. Han, J.-Y. Zhang, Z.-Y. Li, D.-J. Qian, Preparation and study of polyacryamide-stabilized silver nanoparticles through a one-pot process, The Journal of Physical Chemistry B, 110 (2006) 11224-11231.
    [181] K.A. Kusters, S.E. Pratsinis, Strategies for control of ceramic powder synthesis by gas-to-particle conversion, Powder Technology, 82 (1995) 79-91.
    [182] Q.L. Feng, J. Wu, G.Q. Chen, F. Cui, T. Kim, J. Kim, A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus, Journal of biomedical materials research, 52 (2000) 662-668.
    [183] T. Hamouda, A. Myc, B. Donovan, A.Y. Shih, J.D. Reuter, J.R. Baker, A novel surfactant nanoemulsion with a unique non-irritant topical antimicrobial activity against bacteria, enveloped viruses and fungi, Microbiological research, 156 (2001) 1-7.
    [184] I. Matai, A. Sachdev, P. Dubey, S.U. Kumar, B. Bhushan, P. Gopinath, Antibacterial activity and mechanism of Ag–ZnO nanocomposite on S. aureus and GFP-expressing antibiotic resistant E. coli, Colloids and Surfaces B: Biointerfaces, 115 (2014) 359-367.
    [185] A. Ewald, D. Hösel, S. Patel, L.M. Grover, J.E. Barralet, U. Gbureck, Silver-doped calcium phosphate cements with antimicrobial activity, Acta biomaterialia, 7 (2011) 4064-4070.
    [186] I. Sondi, B. Salopek-Sondi, Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria, Journal of colloid and interface science, 275 (2004) 177-182.
    [187] L. Qin, J. Yi, L. Xuefei, L. Li, X. Kenan, X. Lu, The preparation of a difunctional porous β-tricalcium phosphate scaffold with excellent compressive strength and antibacterial properties, RSC advances, 10 (2020) 28397-28407.
    [188] S. Quillard, M. Paris, P. Deniard, R. Gildenhaar, G. Berger, L. Obadia, J.M. Bouler, Structural and spectroscopic characterization of a series of potassium-and/or sodium-substituted β-tricalcium phosphate, Acta biomaterialia, 7 (2011) 1844-1852.
    [189] R. Enderle, F. Götz-Neunhoeffer, M. Göbbels, F. Müller, P. Greil, Influence of magnesium doping on the phase transformation temperature of β-TCP ceramics examined by Rietveld refinement, Biomaterials, 26 (2005) 3379-3384.
    [190] S. Kannan, S. Pina, J. Ferreira, Formation of strontium‐stabilized β‐tricalcium phosphate from calcium‐deficient apatite, Journal of the American Ceramic Society, 89 (2006) 3277-3280.
    [191] M. Schamel, A. Bernhardt, M. Quade, C. Würkner, U. Gbureck, C. Moseke, M. Gelinsky, A. Lode, Cu2+, Co2+ and Cr3+ doping of a calcium phosphate cement influences materials properties and response of human mesenchymal stromal cells, Materials Science and Engineering: C, 73 (2017) 99-110.
    [192] I.V. Fadeeva, B.I. Lazoryak, G.A. Davidova, F.F. Murzakhanov, B.F. Gabbasov, N.V. Petrakova, M. Fosca, S.M. Barinov, G. Vadala, V. Uskoković, Antibacterial and cell-friendly copper-substituted tricalcium phosphate ceramics for biomedical implant applications, Materials Science and Engineering: C, 129 (2021) 112410.
    [193] M. Rai, A. Yadav, A. Gade, Silver nanoparticles as a new generation of antimicrobials, Biotechnology advances, 27 (2009) 76-83.
    [194] M. Shi, Z. Chen, S. Farnaghi, T. Friis, X. Mao, Y. Xiao, C. Wu, Copper-doped mesoporous silica nanospheres, a promising immunomodulatory agent for inducing osteogenesis, Acta Biomaterialia, 30 (2016) 334-344.
    [195] C.D. Hunt, Copper and boron as examples of dietary trace elements important in bone development and disease, Current Opinion in Orthopaedics, 9 (1998) 28-36.
    [196] J.S. Cho, Y.N. Ko, H.Y. Koo, Y.C. Kang, Synthesis of nano-sized biphasic calcium phosphate ceramics with spherical shape by flame spray pyrolysis, Journal of Materials Science: Materials in Medicine, 21 (2010) 1143-1149.
    [197] B. Mirhadi, B. Mehdikhani, N. Askari, Synthesis of nano-sized β-tricalcium phosphate via wet precipitation, Processing and Application of Ceramics, 5 (2011) 193-198.
    [198] A.F.M. Noor, S.R. Kasim, R. Othman, I.D. Ana, K. Ishikawa, Synthesis of biphasic calcium phosphate by hydrothermal route and conversion to porous sintered scaffold, (2013).
    [199] M. Yashima, A. Sakai, T. Kamiyama, A. Hoshikawa, Crystal structure analysis of β-tricalcium phosphate Ca3(PO4)2 by neutron powder diffraction, Journal of Solid State Chemistry, 175 (2003) 272-277.
    [200] M.B. Suwarnkar, R.S. Dhabbe, A.N. Kadam, K.M. Garadkar, Enhanced photocatalytic activity of Ag doped TiO2 nanoparticles synthesized by a microwave assisted method, Ceramics International, 40 (2014) 5489-5496.
    [201] A. Nord, Incorporation of divalent metals in whitlockite-related β-Ca3 (PO4) 2, Neues Jahrbuch fuer Mineralogie Monatshefte, (1983) 489-497.
    [202] F. Zhou, Y. Zhu, L. Yang, D.-Q. Yang, E. Sacher, Ag NP catalysis of Cu ions in the preparation of AgCu NPs and the mechanism of their enhanced antibacterial efficacy, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 632 (2022) 127831.
    [203] M. Banerjee, S. Mallick, A. Paul, A. Chattopadhyay, S.S. Ghosh, Heightened reactive oxygen species generation in the antimicrobial activity of a three component iodinated chitosan− silver nanoparticle composite, Langmuir, 26 (2010) 5901-5908.
    [204] S. Pal, Y.K. Tak, J.M. Song, Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli, Applied and environmental microbiology, 73 (2007) 1712-1720.
    [205] L. Yildirimer, N.T.K. Thanh, M. Loizidou, A.M. Seifalian, Toxicology and clinical potential of nanoparticles, Nano Today, 6 (2011) 585-607.
    [206] M. Roy, G.A. Fielding, H. Beyenal, A. Bandyopadhyay, S. Bose, Mechanical, in vitro antimicrobial, and biological properties of plasma-sprayed silver-doped hydroxyapatite coating, ACS applied materials & interfaces, 4 (2012) 1341-1349.
    [207] F. Shi, Y. Liu, W. Zhi, D. Xiao, H. Li, K. Duan, S. Qu, J. Weng, The synergistic effect of micro/nano-structured and Cu2+-doped hydroxyapatite particles to promote osteoblast viability and antibacterial activity, Biomedical Materials, 12 (2017) 035006.
    [208] W. Dang, B. Ma, B. Li, Z. Huan, N. Ma, H. Zhu, J. Chang, Y. Xiao, C. Wu, 3D printing of metal-organic framework nanosheets-structured scaffolds with tumor therapy and bone construction, Biofabrication, 12 (2020) 025005.
    [209] Z. Huang, Z. Tian, M. Zhu, C. Wu, Y. Zhu, Recent advances in biomaterial scaffolds for integrative tumor therapy and bone regeneration, Advanced Therapeutics, 4 (2021) 2000212.
    [210] M. Yoshinari, Y. Oda, T. Inoue, K. Matsuzaka, M. Shimono, Bone response to calcium phosphate-coated and bisphosphonate-immobilized titanium implants, Biomaterials, 23 (2002) 2879-2885.
    [211] S. Liu, C. Fan, F. Jin, L. Zhao, K. Dai, J. Lu, Preparation and antibacterial activities of porous silver‐doped β‐tricalcium phosphate bioceramics, International Journal of Applied Ceramic Technology, 12 (2015) 294-299.
    [212] A.Z. Alshemary, Y.-F. Goh, I. Shakir, R. Hussain, Synthesis, characterization and optical properties of chromium doped β-Tricalcium phosphate, Ceramics International, 41 (2015) 1663-1669.
    [213] L. Ibrahimzade, O. Kaygili, S. Dundar, T. Ates, S.V. Dorozhkin, N. Bulut, S. Koytepe, F. Ercan, C. Gürses, A.H. Hssain, Theoretical and experimental characterization of Pr/Ce co-doped hydroxyapatites, Journal of Molecular Structure, 1240 (2021) 130557.
    [214] H.N. Van, N.H. Vu, V.-H. Pham, P. Van Huan, B.T. Hoan, D.-H. Nguyen, T. Le Manh, A novel upconversion emission material based on Er3+-Yb3+-Mo6+ tridoped Hydroxyapatite/Tricalcium phosphate (HA/β-TCP), Journal of Alloys and Compounds, 827 (2020) 154288.
    [215] L. Sinusaite, A. Popov, A. Antuzevics, K. Mazeika, D. Baltrunas, J.-C. Yang, J.L. Horng, S. Shi, T. Sekino, K. Ishikawa, Fe and Zn co-substituted beta-tricalcium phosphate (β-TCP): Synthesis, structural, magnetic, mechanical and biological properties, Materials Science and Engineering: C, 112 (2020) 110918.
    [216] H. Chen, Y. Yao, Progress of biomaterials for bone tumor therapy, Journal of Biomaterials Applications, 36 (2022) 945-955.
    [217] Y. Yang, H. Wang, F.-Y. Yan, Y. Qi, Y.-K. Lai, D.-M. Zeng, G. Chen, K.-Q. Zhang, Bioinspired porous octacalcium phosphate/silk fibroin composite coating materials prepared by electrochemical deposition, ACS applied materials & interfaces, 7 (2015) 5634-5642.
    [218] G. Gomes, F. Borghi, R. Ospina, E. López, F. Borges, A. Mello, Nd: YAG (532 nm) pulsed laser deposition produces crystalline hydroxyapatite thin coatings at room temperature, Surface and Coatings Technology, 329 (2017) 174-183.
    [219] J. Chastain, R.C. King Jr, Handbook of X-ray photoelectron spectroscopy, Perkin-Elmer Corporation, 40 (1992) 221.
    [220] N. Zhang, H. Xue, R. Hu, The activity and stability of CeO 2@ CaO catalysts for the production of biodiesel, RSC advances, 8 (2018) 32922-32929.
    [221] D. Guin, S.V. Manorama, J.N.L. Latha, S. Singh, Photoreduction of silver on bare and colloidal TiO2 nanoparticles/nanotubes: synthesis, characterization, and tested for antibacterial outcome, The Journal of Physical Chemistry C, 111 (2007) 13393-13397.
    [222] Y. Li, H. Zhang, M. Jiang, Q. Zhang, P. He, X. Sun, 3D self‐supported Fe‐doped Ni2P nanosheet arrays as bifunctional catalysts for overall water splitting, Advanced Functional Materials, 27 (2017) 1702513.
    [223] K.H. Yoo, H. Kim, W.G. Sun, Y.I. Kim, S.Y. Yoon, Fe-doped tricalcium phosphates: crystal structure and degradation behavior, Materials Research Express, 7 (2020) 125403.
    [224] C. Shi, J. Gao, M. Wang, J. Fu, D. Wang, Y. Zhu, Ultra-trace silver-doped hydroxyapatite with non-cytotoxicity and effective antibacterial activity, Materials Science and Engineering: C, 55 (2015) 497-505.
    [225] Y. Xu, M.T. Wei, H.D. Ou-Yang, S.G. Walker, H.Z. Wang, C.R. Gordon, S. Guterman, E. Zawacki, E. Applebaum, P.R. Brink, Exposure to TiO2 nanoparticles increases Staphylococcus aureus infection of HeLa cells, Journal of nanobiotechnology, 14 (2016) 1-16.
    [226] A. Katsumiti, D. Gilliland, I. Arostegui, M.P. Cajaraville, Mechanisms of toxicity of Ag nanoparticles in comparison to bulk and ionic Ag on mussel hemocytes and gill cells, PloS one, 10 (2015) e0129039.

    無法下載圖示 全文公開日期 2025/08/02 (校內網路)
    全文公開日期 2027/08/02 (校外網路)
    全文公開日期 2027/08/02 (國家圖書館:臺灣博碩士論文系統)
    QR CODE