簡易檢索 / 詳目顯示

研究生: 陳樹松
Shu-Song Chen
論文名稱: 基於離散餘弦轉換-離散傅立葉轉換之具能源效率複合式動態影像浮水印演算法
An Energy-Efficient Video Watermarking Algorithm Based on DCT-DFT Composite Approach
指導教授: 阮聖彰
Shanq-Jang Ruan
口試委員: 張延任
Yen-Jen Chang
許孟超
Mon-Chau Shie
吳晉賢
Chin-Hsien Wu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 52
中文關鍵詞: 能源效率浮水印仿射攻擊H.264動態影像
外文關鍵詞: Energy-Efficient, Watermark, Affine transform, H.264, Video
相關次數: 點閱:265下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 對版權保護而言,數位浮水印是一個相當具有潛力的方法。為了達到強健性、透明度、盲解…等效果,有相當多文獻討論如何發展出一個高品質的浮水印。雖然許多滿足抵抗各種攻擊的方法已經被提出,但相對來說這些複雜架構也為硬體實現帶來許多面積以及能源上的消耗。在嵌入式系統上,晶片面積和電池壽命都受到嚴格限制,因
    此這些高複雜度的浮水印方法在時下並不受到歡迎。

    在本篇論文中,為了抵抗幾何攻擊我們提出一個基於離散餘弦轉換-離散傅立葉轉換之具能源效率複合式動態影像盲解浮水印。此演算法將浮水印嵌於離散餘弦轉換域並將多組樣版藏於離散傅立葉轉換域來抵抗幾何攻擊。由於我們可以藉由壓縮的動態影像直接得到離散餘弦轉換頻域係數,因此將浮水印訊息嵌於離散餘弦轉換域來節省功率消耗。有鑒於此,在整個設計中離散傅立葉轉換為主要的能源消耗。此外,我們提出部分離散傅立葉轉換和取樣技術來降低大量的計算複雜度以達到低能源消耗的目的。更精確地來說,在樣板的嵌入過程中大多數離散傅立葉轉換頻域的係數並沒有作用,所以樣版可以被
    藏於我們所提出的特殊離散傅立葉轉換域中。

    在本實驗中,們將所提出的H.264動態影像標準浮水印實作在XScale PXA270 處理器架構上。實驗結果證明我們所提出的方法可以有效地減少能源消耗,此方法的離散傅立葉轉換和反傅立葉轉換與原本的傅立葉轉換和反傅立葉轉換相比,分別減少了67.68% 和41.71% 的能源消耗。在整個浮水印設計中,相對於離散小波轉換-離散傅立葉轉換的方法減少了53.34%的能源消耗。除此之外,品質量測的結果顯示我們所提出的浮水印可以抵抗各種訊號失真,例如 H.264壓縮、旋轉、縮放、銳利化、模糊化、亮度增加、亮度減少和剪裁。


    Digital watermarking is a potential method for copyright protection. In order to achieve robustness, transparency, blindness, and etc., much literature has discussed how to develop a high quality watermarking. Although these previous methods offer the satisfactory results for resisting many attacks, the complicated frameworks cost a lot of area and energy consumption for hardware implementation. Since the chip area and battery life of embedded systems are always restricted, these high complexity watermarking methods are not
    popular used nowadays.

    In this thesis, we present a blind energy-efficient video watermarking based on discrete cosine transform-discrete Fourier transform (DCT-DFT) composite to resist geometric attacks. The proposed algorithm provides the robustness via hide watermark in DCT domain, and supply the capability of resisting geometric attacks by embedding a group of template to DFT domain. For power saving, the watermark massage is embedded in DCT domain, because DCT frequency coefficients can be provided by compressed video directly. For this reason, the whole DFT consumes the significant energy dissipation in the total flow. In addition, partial DFT and downsampling methods are proposed to reduce the huge computational complexity, thereby low energy consumption. More precisely, since the most of frequency coefficients in DFT domain are useless for template embedding. ,the template can be hidden in proposed special DFT domain.

    In our experiments, we implemented the proposed watermarking approach in H.264
    video standard. Experimental results demonstrate the proposed approach can reduce energy consumption effectively. The proposed DFT and IDFT only consume 67.68% and 41.71%energy dissipation of original Fast Fourier transform (FFT) and inverse FFT respectively. The energy reduction rate of total watermarking flow is 53.34% compared with DWTDFT composite method. Moreover, the quality measuring results show that the proposed watermarking algorithm also can survive from various signal distortions such as H.264 compression, rotation, scaling, sharpening, blurring, intensity adjustment, and cropping.

    Table of Contents iv List of Tables vi List of Figures vii Abstract ix 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 1.1 Observation and Motivation . . . . . . . . . . . . . . . . . . . .1 1.2 Major Contribution of This Thesis . . . . . . . . . . . . . . . . 4 1.3 Organization of This Thesis . . . . . . . . . . . . . . . . . . . 5 2 Template-BasedWatermarking Technique Background . . . . . . . . . 6 2.1 DFT and its Properties . . . . . . . . . . . . . . . . . . . . . 7 2.1.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . .7 2.1.2 General Properties of the Fourier Transform . . . . . . . . . . 7 2.2 Pereira’s algorithm . . . . . . . . . . . . . . . . . . . . . . 8 2.2.1 Embedding . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2.2 Decoding the Watermark . . . . . . . . . . . . . . . . . . . .10 2.3 Kang’s algorithm . . . . . . . . . . . . . . . . . . . . . . . .11 2.3.1 Watermark Embedding . . . . . . . . . . . . . . . . . . . . . .11 2.3.2 Watermark Extraction with Proposed Resynchronization . . . . . 13 3 Proposed Energy-EfficientWatermark Architecture . . . . . . . . . .16 3.1 The methodology of Watermark Embedding . . . . . . . . . . . . . 18 3.1.1 Watermark Message Embedding . . . . . . . . . . . . . . . . . .18 3.1.2 Template Embedding . . . . . . . . . . . . . . . . . . . . . . 20 3.2 Watermark Extraction . . . . . . . . . . . . . . . . . . . . . . 27

    [1] H. Oktay Altun, Adem Orsdemir, Gaurav Sharma, and Mark F. Bocko, Optimal spread spectrum watermark embedding via a multistep feasibility formulation, IEEE Trans. on Image Processing 18 (2009), no. 2, 371–387.

    [2] G. W. Braudaway and F. Minter, Automatic recovery of invisible image watermarks from geometrically distorted images, SPIE: Security and Watermarking of Multimedia Contents I 9 (2000), no. 4, 477–483.

    [3] D. Brooks, V. Tiwari, and M. Martonosi, Wattch: a framework for architectural-level power analysis and optimizations, Proceedings of the 27th International Symposium on Computer Architecture, 2000, pp. 83–94.

    [4] F. Deguillaume, G. Csurka, and J. J. K. O’Ruanaidh, Robust 3d dft video watermarking, Proceedings of the 1999 Security and Watermarking of Multimedia Contents.

    [5] Jana Dittmann, Thomas Fiebig, and Raif Steinmetz, New approach for transformation-invariant image and video watermarking in the spatial domain: Ssp self spanning patterns, Proceedings SPIE SecurityWatermarking of Multimedia Contents
    II,, vol. 3971, Jan. 2000, pp. 176–185.

    [6] Gwenael Doerr and Jean-Luc Dugelay, A guide tour of video watermarking, Signal Processing: Image Communication 18(4) (2003), 263–282.

    [7] Ping Dong, J.G. Brankov, N.P. Galatsanos, Y. Yang, and F. Davoine, Digital watermarking robust to geometric distortions., IEEE Trans. on Image Processing 14 (2005), 2140–2150.

    [8] M. Ejima and A. Miyazaki, A wavelet-based watermarking for digital images and video, International Conference on Image Processing, vol. 3, Sep. 2000, pp. 678–681.

    [9] F. Hartung and B. Girod, Watermarking of uncompressed and compressed vide, Signal Processing 66 (1998), no. 3, 283–301.

    [10] A. Herrige, J.J.k. O’Ruanaidh, H. Petersen, S. Pereira, and T. Pun, Secure copyright protection techniques for digital images, Second International Information Hiding Workshop, Portland, OR, Apr. 1998.

    [11] C.-T. Hsu and J.-L. Wu, Hidden digital watermarks in image, IEEE Trans. on Image Processing 8 (1999), 58–68.

    [12] K. Huhring, H.264/avc joint model 15.1 (jm-15.1) reference software, http://iphome.hhi.de/suehring/tml/.

    [13] H. Inoue, A. Miyazaki, T. Araki, and T. Katsura, A digital watermark method using the wavelet transform for video data, Proceedings of the 1999 IEEE International Symposium on Circuits and Systems, vol. 4, May 1999, pp. 247–250.

    [14] Ton Kalker, Geert Depovere, Jaap Haitsma, and Maurice Maes, A video watermarking system for broadcast monitoring, Proceedings SPIE Security Watermarking of Multimedia Contents, vol. 3657, Jan. 1999, pp. 103–112.

    [15] X. Kang, J. Huang, and Y.Q. Shi, An image watermarking algorithm robust to geometric distortion, Lecture Notes in Computer Science: Proceedings of International Workshop on Digital Watermarking 2002, vol. 2613, 2002, pp. 212–223.

    [16] Xiangui Kang, Jiwu Huang, Yun Q. Shi, and Yan Lin, A dwt-dft composite watermarking scheme robust to both affine transform and jpeg compression, IEEE Trans. on Circuits and Systems for Video Technology 13 (2003), no. 8, 776–786.

    [17] E. Koch and J. Zhao, Towards robust and hidden image copyright labeling, IEEE Workshop on Nonlinear Signal and Image Processing, Jun. 1995.

    [18] Alper Koz and A. Aydin Alatan, Oblivious spatio-temporal watermarking of digital video by exploiting the human visual system, IEEE Trans. on Circuits and Systems for Video technology 18 (2008), no. 3, 326–337.
    [19] R. L. Lagendijk, G. C. Langelaar, and I. Setyawan, Watermarking digital image and video data, IEEE Signal Processing Magazine 17 (2000), no. 5, 20–46.

    [20] Li-Te Lee, Yu-Ting Pai, Shanq-Jang Ruan, and Jurgen Goetze, An energy efficient and high security watermarking mechanism based on ds-cdma, 2009 IEEE International Conference on Multimedia and Expo, June 2009, pp. 18–22.

    [21] C. Y. Lin, M. Wu, and J. A. Bloom, Rotation, scale, and translation resilient public watermarking for images, IEEE Trans. on Image Processing 10 (2001), 755–766.

    [22] EI Lin, AM Eskicioglu, RL Lagendijk, and EJ Delp, Advances in digital video content protection, Proceedings of the IEEE, vol. 93(1), Jan. 2005, pp. 171–183.

    [23] C. Loeffler, A. Lightenberg, and G. S. Moschytz, Practical fast 1-d dct algorithms with 11-multiplications, International Conference on Acoustics, Speech, and Signal Processing, vol. 2, 1989, pp. 988–991.

    [24] S. P. Mohanty, N. Ranganathan, and R. K. Namballa, Vlsi implementation of invisible digital watermarking algorithms towards the development of a secure jpeg encoder, IEEE Workshop on Signal Processing Systems, SIPS, Aug. 2003, pp. 183–188.

    [25] J. J. K. O’Ruanaidh and T. Pun, Rotation, scale and translation invariant spread spectrum digital image watermarking, Signal Processing 66 (1998), no. 3, 303–317.

    [26] Yu Ting Pai and Shanq Jang Ruan, Low power block-based watermarking algorithm, IEICE Trans. on Information and Systems E89-D (2006), 1507–1514.

    [27] S. Pereira, J. J. K. O’Ruanaidh, and F. Deguillaume, Template based recovery of fourier-based watermarks using log-polar and log-log maps, IEEE International Conference on Multimedia Computing and Systems, vol. 1, June 1999, pp. 870–874.

    [28] Shelby Pereira and Thierry Pun, Robust template matching for affine resistant image watermarks, IEEE Trans. on Image Processing 9 (2000), no. 6, 1123–1129.

    [29] F. A. P. Petitcolas, R. J. Anderson, and M. G. Kuhn, Attacks on copyright marking systems, Second InternationalWorkshop on Information Hiding, Apirl 1998, pp. 218–238.

    [30] C. Podilchuk and E. Delp, Digital watermarking: algorithms and applications, IEEE Signal Processing Magazine 18 (2001), no. 4, 33–46.

    [31] M.K. Samee and J. Gotze, Increased robustness and security of digital watermarking using ds-cdma, IEEE International Symposium on Signal Processing and Information Technology, Dec. 2007, pp. 185–189.

    [32] Multiresolution scene-based video watermarking using perceptualmodels, Multiresolution scene-based video watermarking using perceptualmodels, IEEE Journal on Selected Areas in Communications 16(4) (1998), 540–550.

    [33] Y.H. Seo and D.W. Kim, Fpga design of real-time watermarking processor for 2ddwtbased video compression, IEICE Trans. on Fundamentals E87-A (2004), no. 9, 1297–1304.

    [34] C. V. Serdean, M. A. Ambroze, M. Tomlinson, and J. G. Wade, Dwt-based high capacity blind video watermarking, invariant to geometrical attacks, in Proc. IEEE Vision, Image Signal Processing 150 (2003), 51–58.

    [35] I. Setyawan, G. Kakes, and R. L. Lagendijk, Synchronization-insensitive video watermarking using structured noise pattern, Proceedings SPIE Security Watermarking of Multimedia Contents IV, Jan. 2002, pp. 520–530.

    [36] Kai Wang, Guillaume Lavoue, Florence Denis, and Atilla Baskurt, Hierarchical watermarking
    of semiregular meshes based on wavelet transform, IEEE Trans. on Information Forensics and Security 3 (2008), no. 4, 620–634.

    [37] RAYMOND B. WOLFGANG and CHRISTINE I. PODILCHUK, Perceptual watermarks for digital images and video, Proc. IEEE, vol. 87, Jul. 1999, pp. 1108–1126.

    [38] Z. Xiong, K. Ramchandran, M. T. Orchard, and Y. Zhang, A comparative study of dct-and wavelet based coding, IEEE Trans. Circuits Syst. Video Technology 9 (1999), no. 5, 692–695.

    QR CODE