簡易檢索 / 詳目顯示

研究生: 黃宏祺
Hong-chi Huang
論文名稱: 使用基板合成波導設計10 GHz 微波振盪器
Design of 10 GHz Microwave Oscillator Using Substrate Integrated Waveguide
指導教授: 曾昭雄
Chao-hsiung Tseng
口試委員: 王蒼容
Chun-long Wang
馬自莊
Tzyh-ghuang Ma
瞿大雄
Tah-hsiung Chu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 47
中文關鍵詞: 振盪器基板合成波導
外文關鍵詞: oscillator, SIW, DGS
相關次數: 點閱:273下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,主要是利用基板合成波導技術來設計高輸出功率及良好抑制諧波能力的10 GHz共閘極及共源極振盪器。應用基板合成波導技術實現高品質因數共振腔,其無載品質因數較傳統的微帶線共振腔佳,此種基板合成波導共振腔有利於設計低相位雜訊振盪器。基板合成波導亦可於上板接地面蝕刻接地面缺陷圖案來合成通帶及載止帶。本論文採用接地面缺陷結構之基板合成波導來傳遞振盪頻率和抑制二次及三次諧波雜訊。因此,振盪器擁有良好抑制諧波的能力。為了使振盪器能輸出最大射頻功率並縮小其電路尺寸,本論文利用導波管帶狀隔板電感技術設計及實現基板合成波導匹配電路。最後,藉由結合上述被動原件及場效應電晶體構成基板合成波導振盪器。此基板合成波導振盪器的量測結果呈現高輸出功率及良好的抑制諧波能力。


    In this thesis, the substrate integrated waveguide (SIW) technique is used to develop the X-band common-gate and common-source oscillators with a high output power and a good harmonic suppression. By applying SIW, the resonator with a high quality factor Q can be realized. It has a better unloaded Q than the conventional microstrip resonator. Hence, as the SIW resonator is used to develop an oscillator, it will have a low phase noise property. The passband and stopband of SIW can be also synthesized using the specified defect grounded patterns. In this thesis, the SIW with DGS is adopted to pass the oscillating frequency and suppress the 2nd and 3rd harmonics of the oscillator. Therefore, the oscillator can perform a good harmonic suppression. In order to transfer the maximum output power of the oscillator and miniaturize the oscillator circuit, the SIW matching circuit is developed and realized by using iris-inductance technique. Finally, the SIW oscillators are designed and realized. The measured results demonstrate that the developed oscillators have high output powers and good harmonic suppressions.

    摘要.......................................................................i Abstract..................................................................ii Chapter 1 Introduction.....................................................1 1-1 Design of microwave substrate integrated waveguide (SIW) oscillator....1 1-2 Paper survey...........................................................4 1-3 Thesis organization ...................................................5 Chapter 2 Passive components for SIW oscillator design.....................6 2-1 SIW resonator..........................................................6 2-2 SIW with the defect ground structures (DGS)...........................13 2-3 SIW matching circuit..................................................17 2-4 Bias circuit..........................................................19 Chapter 3 Development of SIW microwave oscillators........................22 3-1 Principle.............................................................22 3-2 Design procedures of SIW oscillator...................................28 3-3 SIW oscillator with common-gate configuration.........................29 3-4 SIW oscillator with common-source configuration.......................35 Chapter 4 Conclusions.....................................................38 Reference.................................................................40 Appendix A Data sheet for NE3514S02.......................................43

    [1] K. CHANG, RF and Microwave Wireless Systems, John Wiley & Sons, Inc.,2000.
    [2] K. Wu, “Integration and interconnect techniques of planar and nonplanar structures for microwave and millimeter-wave circuits—Current status and future trend,” in 2001 Asia-Pacific Microwave Conf. Proc., (APMC’01), pp. 411–416. invited paper.
    [3] D. Deslandes, K. Wu, “Integrated microstrip and rectangular waveguide in planar form,” IEEE Microwave Wireless Compon. Lett., vol. 11, pp. 68–70, Feb. 2001.
    [4] D. Deslandes, K. Wu, “Integrated transition of coplanar to rectangular waveguides,” in IEEE MTT-S Int. Microwave Symp. Dig., vol. 2, pp. 619-622, May 2001.
    [5] Y. Cassivi, L. Perregrini, P. Arcioni, M. Bressan, K. Wu, and G. Conciauro, “Dispersion characteristics of substrate integrated rectangular waveguide,” IEEE Microwave Wireless Compon. Lett., vol. 12, pp. 333-335, Sept. 2002.
    [6] Y. Cassivi, L. Perregrini, K. Wu, and G. Conciauro, “Low-cost and high-Q millimeter-wave resonator using substrate integrated waveguide technique,” Eur. Microwave Conf., pp 1-4, Oct. 2002.
    [7] Y. Cassivi, K. Wu, “Low cost microwave oscillator using substrate integrated waveguide cavity,” IEEE Microwave Wireless Compon. Lett., vol. 13, pp. 48-50, Feb. 2003.
    [8] M. Abdolhamidi, M. Shahabadi, “X-Band Substrate Integrated Waveguide Amplifier,” IEEE Microw. Wireless Conpon. Lett., vol. 18, pp. 815-817, Dec. 2008.
    [9] Z. Li and K. Wu, “24-GHz frequency-modulation continuous-wave radar front-end system-on-substrate,” IEEE Trans. Microw. Theory Tech., vol. 56, pp. 278–285, Feb. 2008.
    [10] X.-P. Chen, K. Wu, and Z. L. Li, “Dual-band and triple-band substrate integrated waveguide filters with chebyshev and quasi-elliptic responses,” IEEE Trans. Microw. Theory Tech., vol. 55, pp. 2569–2578, Dec. 2007.
    [11] Z.-C. Hao, W. Hong, J.-X. Chen, X.-P. Chen, and K. Wu, “Planar diplexer for microwave integrated circuits,” Proc. Inst. Elect. Eng., vol. 152, pp. 455–459, Dec. 2005.
    [12] J.-X. Chen, W. Hong, Z.-C. Hao, H. Li, and K. Wu, “Development of a low cost microwave mixer using a broadband substrate integrated waveguide (SIW) coupler,” IEEE Microw. Wireless Compon. Lett., vol. 16, pp. 84–86, Feb. 2006.
    [13] Z.-C. Hao, W. Hong, J.-X. Chen, X.-P. Chen, K. Wu, “Compact super-wide bandpass substrate integrated waveguide (SIW) filters,” IEEE Microw. Trans. Theory Tech., vol. 53, pp. 2968-2977, Sep. 2005.
    [14] F. Xu and K. Wu, “Guided-wave and leakage characteristics of substrate integrated waveguide,” IEEE Trans. Microw. Theory Tech., vol. 53, pp. 63–73, Jan. 2005.
    [15] D. M. Pozar, Microwave Engineering, 3rd ed. John Wiley & Sons, Inc., 2005.
    [16] L.-H. Chua and Dariush Mirshekar-Syahkal, “Accurate and direct characterization of high-Q microwave resonators using one-port measurement,” IEEE Trans. Microw. Theory Tech., vol. 51, pp. 978–985, March. 2003.
    [17]G. D. Vendelin, A. M. Pavio and U. L. Rohde, Microwave Circuit Design Using Linear and Nonlinear Techniques, John Wiley & Sons, Inc., 1990.
    [18] K. Kurokawa, J.P. Beccone and N.D. Kenyon, “Broadband Negative Resistance Oscillator Circuits,” Microw. Symp. Diq. G-MTT Inter., vol. 69, pp. 281–284, May. 1969.
    [19] G. Gonzales, Microwave Transistor Amplifier Analysis and Design, 2nd ed. Prentice-Hall, Inc., 1997.

    QR CODE