簡易檢索 / 詳目顯示

研究生: 王俊容
Chun-Jung Wang
論文名稱: 光纖光柵與光循環器組成之光纖雷射:研製與應用
Investigation and applications: Fiber lasers based on fiber Bragg grating and optical circulator
指導教授: 廖顯奎
Shien-Kuei Liaw
口試委員: 張嘉男
Chia-Nan Chang
韓斌
Pin Hun
劉政光
Cheng-Kuang Liu
祁甡
Shen Chi
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 92
中文關鍵詞: 波長可調光纖光柵波長可調光纖雷射光纖感測光纖雷射光纖光柵
外文關鍵詞: fiber laser, fiber Bragg grating, tunable fiber laser, wavelength tunable fiber Bragg grating, fiber sensor
相關次數: 點閱:434下載:36
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文共分為三個部份;首先介紹光纖光柵製作,從光纖光柵的曝光、退火機制、波長微調技術、溫度補償技術到封裝程序。目前自製的光纖光柵之反射率可達99.0% - 99.9%,3 dB頻寬約為0.25 nm。利用溫度補償的技術,將光纖光柵的溫度飄移係數由8.9 降至0.6 pm/oC。接著介紹環形共振腔式光纖雷射及線性共振腔式光纖雷射,前者架構使用40mW的泵激光源,3公尺的摻鉺光纖,得到雷射輸出功率為4.44 dBm,旁模抑制比為66.89 dB,3dB線寬為0.07 nm,泵激光源轉換效率為13 %;而線性共振腔式光纖雷射架構使用40mW的泵激光源,1.9公尺的摻鉺光纖可得到的雷射輸出功率為6.91dBm,旁模抑制比為53.23dB,3dB線寬為0.045nm,泵激光源轉換效率為40 %。最後,利用波長可調光纖光柵研製波長可調光纖雷射,其波長可調範圍為31 nm,輸出功率為0 dBm,功率變動為1 dB,線寬為0.05nm,訊號對雜訊比為60 dB,波長調整解析度為0.3 nm。利用環型光纖雷射架構作為光纖感測器之光源,經過解調機制,溫度、壓縮及拉伸應變的感測靈敏度分別可達到0.03 pm/oC 、0.06 pm/100pm 及0.23 pm/100pm ,與現行文獻的傳輸品質相當,且具有提升光纖感測量測距離之優點。


    In this thesis, we introduce the fabrication process of fiber Bragg gratings (FBG). The methods include light exposure, annealing, wavelength fine tuning, thermal compensation and package process. The reflectivity and 3dB band-width of home-made FBGs are above 99% and 0.25 nm, respectively. Via annealing process, the temperature coefficient of FBG is reduced from 8.9 to 0.6 pm/oC.The second part is to introduce both the ring and linear cavity erbium doped fiber lasers. In the ring cavity fiber laser, the output power, side mode suppression ratio, 3 dB line-width and power transfer efficiency are 4.44 dBm, 66.89 dB, 0.07 nm and 13 %, respectively, under the optimum conditions of 40 mW pump power and 3 meters of EDF; In the linear cavity fiber laser, the output power, side mode suppression ratio, 3 dB line width and power transfer efficiency are 6.91dBm, 53.23dB, 0.045nm and 40 %, respectively, under the optimum conditions of 40 mW pump power and 1.9 meters of EDF. Finally, a wavelength tunable fiber laser is investigated based on wavelength tunable FBG. The tunable range, laser output power, power variation, 3 dB line-width, signal to noise ratio and tuning resolution are 31 nm, 0 dBm, 1 dB, 0.05nm, 60 dB and 0.3 nm, respectively. The tunable laser is used in a sensing system as a light source for parameters sensing. After de-modulate process, the parameters of temperature, pressure, and tension sensitivity are 0.03 pm/oC, 0.06 pm/100pm and 0.23 pm/100pm, respectively. Besides the performance is not inferior to prior works, it has the merit to allow longer distance sensing thanks to larger signal power of the fiber laser.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 X 第一章 緒論 1 1-1 前言 1 1-2 研究動機 2 1-3 論文架構 3 第二章 光纖光柵的製作 5 2-1 耦合模態理論 5 2-2 光纖光柵的製作與參數的量測 11 2-3 退火程序 16 2-4 溫度補償與封裝 17 第三章 摻鉺光纖雷射的研製 21 3-1 摻鉺光纖之放大原理 22 3-2 摻鉺光纖雷射理論分析 24 3-3 環型共振腔摻鉺光纖雷射 27 3-4 線性共振腔摻鉺光纖雷射 30 3-5 小結 33 第四章 摻鉺光纖雷射特性分析 35 4-1 摻鉺光纖雷射之三階鉺離子速率方程式 35 4-2 環型共振腔摻鉺光纖雷射之參數討論 39 4-2.1 光纖光柵反射率對雷射信號的影響 39 4-2.2 泵激功率與摻鉺光纖長度對雷射信號的影響 40 4-3 線性共振腔摻鉺光纖雷射之參數討論 42 4-3.1 光纖光柵反射率對雷射信號的影響 42 4-3.2 泵激功率與摻鉺光纖長度對雷射信號的影響 44 4-4 提升環型光纖雷射泵激光源使用效率架構 48 4-5 小結 49 第五章 波長可調光纖光柵雷射 51 5-1 波長可調摻鉺光纖雷射光源的研製 51 5-1.1 波長可調光纖光柵 51 5-1.2波長可調摻鉺光纖雷射 54 5-2使用波長可調光纖雷射之光纖光柵感測系統 57 5-2.1 傳統式光纖光柵感測系統 58 5-2.2 以環型摻鉺光纖雷射為光源的光纖感測系統 61 5-2.3 光纖光柵溫度感測器 64 5-2.4 解調機制 66 5-2.5 多重參數之分時多工感測系統 70 5-3 小結 74 第六章 結論與未來展望 75 6-1 結論 75 6-2 未來展望 77 參考文獻 78 碩士班期間研究成果 85 作者簡介 86

    [1] 李銘淵, “光纖通信概論,” 全華科技圖書股份有限公司, 民國八十六年五月
    [2] 董德國, 陳萬清譯, “光纖通訊,” 台灣東華書局股份有限公司, 民國八十九年六月.
    [3] 林來誠, “光纖光柵製作與應用,” 光連雙月刊, 第6期, 財團法人光電科技工業協進會, 1996.
    [4] 黃立文, “光纖光柵製作與應用(二),” 光連雙月刊, 第10期, 財團法人光電科技工業協進會, 1997.
    [5] Jeff Hecht, “Understanding Fiber Optics 4th edit.,” Prentice Hall, 2002.
    [6] Eldad Yahel, Amos A. Harky, “Modeling and optimization of short Er-Yb codoped fiber lasers,” IEEE Journal of Quantum Electronics, vol. 39, no.11, pp. 1444-1451, November, 2003.
    [7] 畢衛紅, 張闖, “光纖Bragg光柵的反射特性研究,” 傳感器技術, 第22期, 第8卷, 2003.
    [8] 陳宣臣, “波長可調光纖光柵之研製與應用,” 國立台灣科技大學電子工程研究所碩士論文, 2004.
    [9] T. Erdogan, V. Mizrahi, “Decay of UV induced fiber Bragg gratings,” Proc. Optical fiber Conference, pp. 50, 1994.
    [10] S. R. Baker, H. N. Rourke, V. Baker, D. Godchild, “Thermal decay of fiber Bragg gratings written in boron and germanium co-doped silica fiber,” IEEE/OSA Journal of Lightwave Technology, vol. 15, no. 8, pp. 1470-1477, 1997.
    [11] M. Matsuura, N. Kishi, “Frequency control characteristics of a single-frequency fiber laser with an external light injection,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 7, Issue 1, pp. 55-58, Jan/Feb 2001.
    [12] H. Chen, F. Babin, M. Leblance, and G. W. Schinn, “Widely tunable single-frequency erbium-doped fiber lasers,” IEEE Photonics Technology Letters, vol. 15, no. 2, pp. 185-187, 2003.
    [13] S. H. Chang, I. K. Hwang, B. Y. Kim, H. G. Park, “Windely Tunable Single-Frequency Er-doped Fiber Laser With Long Linear Cavity,” IEEE Photonics Technology Letters, vol. 13, no. 4, 2001.
    [14] 廖協虹, “C+L-Band 摻鉺光纖放大器的研製與應用,” 國立台灣科技大學電子工程研究所碩士論文, 2004.
    [15] Harry J. Dutton, “Understanding Optical Communication,” Prentice Hall, 1999.
    [16] 廖顯奎, “光纖放大器及光纖光柵組成裝置之研製及其於分波多工光通信系統之應用,” 國立交通大學光電工程研究所博士論文, 1999.
    [17] 林螢光編著, “光電子學-原理、元件與應用,” 全華科技圖書股份有限公司, 民國九十一年五月.
    [18] Harry J. R. Dutton, “Understanding optical communication,” Prentice Hall, 1999.
    [19] C. G. Kersey, M. A. Putnam, E. Joseph Friebele, “Fiber Grating sensors, ”IEEE/OSA Journal of Lightwave Technology, vol. 15, no. 8, 1442-1463, 1997.
    [20] Joseph W. Goodman, “Fiber optic smart structures,” John Wiley & Sons, 1995.
    [21] S.-K. Liaw, H.-Y.Tseng, and S. Chi, “Parallel pump-shared linear-cavity lasers array using 980 nm pump reflectors or N pieces of gain fibers as self-equalizers,” IEEE Photonics Technol. Lett., vol. 12, no. 1, pp. 19-21, 2000.
    [22] M. Ibsen, S. Y. Set, G. S. Goh, K. Kikuchi, “Broad-Band Continuously Tunable All Fiber DFB Lasers,” IEEE Photonics Technology Letters, vol. 14, no. 1, 2002.
    [23] C. G. Kersey, M. A. Putnam, E. Joseph Friebele, “Fiber Grating sensors, ” IEEE/OSA Journal of Lightwave Technology, vol. 15, no. 8, 1442-1463, 1997.
    [24] Y. Z. Xu, H. Y. Tam, W. C. Du, and M. S. Demokan, “Tunable dual-wavelength switching fiber grating laser,” IEEE Photonics Technology Letters., vol. 10, no. 3, pp. 334-336, 1998.
    [25] Y. Cheng, J. T. Kringlebotn, W. H. Loh, R. I. Laming, and D. N. Payne, “Stable single-frequency traveling-wave fiber loop laser with integral saturable-absorber-based tracking narrow-band filter,” Optics Letters, vol. 20, no. 8, pp. 875-877, 1995.
    [26] Song, Y.W.; Havstad, S.A.; Starodubov, D.; Xie, Y.; Willner, A.E.; Feinberg, “40-nm-wide tunable fiber ring laser with single-mode operation using a highly stretchable FBG ,” IEEE Photonics Technology Letters, vol. 13, Issue 11, pp. 1167 – 1169, Nov. 2001.
    [27] D. W. Huang, G. C. Lin, C. C. Yang, “Fiber-grating-based self-matched additive-pulse mode-locked fiber lasers,” IEEE Journal of Quantum Electronics, vol. 35, Issue 2, pp. 138-146, 1999.
    [28] T. Qiu, L. Li, A. Schulzgen, V. L. Temyanko, T. Luo, S. Jiang, A. Mafi,; J. V. Moloney, N. Peyghambarian, “Generation of 9.3-W multimode and 4-W single-mode output from 7-cm short fiber lasers,” IEEE Photonics Technology Letters, vol. 16, Issue 12, pp. 2592-2594, Dec. 2004.
    [29] Y. C. Jeong, C. Alegria, J. K. Sahu, L. Fu, M. Ibsen, C. Codemard, M. R. Mokhtar, J. Nilsson, “A 43-W C-band tunable narrow-linewidth erbium-ytterbium codoped large-core fiber laser,” IEEE Photonics Technology Letters, vol. 16, Issue 3, pp. 756-758, March 2004.
    [30] J. Zhang; W. Y. Lit, G. W. Schinn, “Cancellation of associated frequency dithering in a single-frequency compound-ring erbium-doped fiber laser,” IEEE Photonics Technology Letters, vol. 8, Issue 12, pp.1621-1623, Dec. 1996.
    [31] C. C. Lee, Y. K. Chen, S. K. Liaw, “Single longitudinal mode fiber laser with a passive multiple ring cavity and its application for video transmission,” Optics Letters, vol. 23, no. 5, 1998.
    [32] S. K. Liaw, F. C. Hung, Z. C. Xu, Y. Jiao, T. Qin, H. Zhang, Y. L. Guo, X. P. Zheng, “Wavelength tuning and multiple wavelength array waveguide grating lasers,” Optical Engineering, vol. 42, no. 8, pp. 2178-2179, 2003.
    [33] S. Kim, J. Kwon, S. Kim, B. Lee, “multiplexed strain sensor using fiber grating tuned fiber laser with a semiconductor optical amplifier,” IEEE Photonics Technology Letters, vol. 13, no. 4, pp.350-351, 2001.
    [34] S. U. Alam, A. B. Grudinin, “Tunable picosecond frequency shifted feedback fiber laser at 1550 nm,” IEEE Photonics Technology Letters, vol. 16, no. 9, pp. 2012-2014, 2004.
    [35] Y. Yu, H. Zhao, “A novel demodulation scheme for fiber Bragg grating sensor system,” IEEE Photonics Technology Letters, vol. 17, no. 1, pp. 166-168, 2005.
    [36] Jose M. Baptista, Silivia Abad, Gaspar M. Rego, Luis A. Ferreira, Jose L. Santos, “Wavelength multiplexing of frequency based self referenced optic intensity sensors,” Optical Engineering, vol. 43, no. 3, pp. 702-707, 2004.
    [37] P. C. Peng, H. Y. Tseng, S. chi, “Accurate temperature sensor system based on linear cavity fiber laser array,” IEEE Sensors 2002 Proceedings, vol. 1, pp. 183-186, 2002.
    [38] Randy Giles, Song Jiang, “Fiber grating sensor for wavelength tracking in single fiber WDM assess PON’s,” IEEE Photonics Technology Letters, vol. 9, no. 4, pp. 523-525, 1997.
    [39] S. Abad, F. M. Araujo, L. A. Ferrerira, J. L. Santos, M. Lopez-Amo, “Comparative analysis of wavelength multiplexed photonic sensor networks using fused biconical WDMs,” IEEE Sensors Journal, vol. 3, no. 4, pp. 475-483, 2003.
    [40] Y. Yu, L. Lui, H. Tam, W. Chung, “Fiber laser based wavelength division multiplexed fiber Bragg grating sensor system,” IEEE Photonics Technology Letters, vol. 13, no. 7, pp. 702-704, 2001.
    [41] L. C. G. Valente, A. M. B. Braga, A. S. A. Ribeiro, R. D. Regazzi, W. Ecke, C. Chojetzke, R. Willsch, “Combined time and wavelength multiplexing technique of optical fiber grating sensor arrays using commercial OTDR equipment, IEEE Sensors Journal, vol. 3, no. 1, pp. 31-34, 2003.
    [42] W. C. Du, X. M. Tao, H. Y. Tam, “Fiber bragg grating cavity sensor for simultaneous measurement of strain and temperature,” IEEE Photonics Technology Letters, vol. 11, no. 1, pp. 105-107, 1999.
    [43] G. Chen, L. Y. Liu, H. Z. Jia, J. Yu, L. Xu, W. Wang, “Simultaneous strain and temperature measurements with fiber Bragg grating written in novel Hi-Bi optical fiber,” IEEE Photonics Technology Letters, vol. 16, no. 1, pp. 221-223, 2004.
    [44] C. Z. Shi, N. Zeng, C. C. Chan, Y. B. Liao, W. Jin, L. Zhang, “Improving performance of FBG sensors in a WDM network using a simulated annealing technique,” IEEE Photonics Technology Letters, vol. 16, no. 1, pp. 227-229, 2004.
    [45] B. O. Guan, H. Y. Tam, X. M. Tao, X. Y. Dong, “Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating,” IEEE Photonics Technology Letters, vol. 12, no. 6, pp. 675-677, 2000.
    [46] O. Frazao, R. Romero, G. Rego, P. V. S. Marques, H. M. Salgado, J. L. Santos, “Sampled fiber Bragg grating sensors for simultaneous strain and temperature measurement,” IEE Electronics Letters, vol. 38, no. 14, pp. 693-695, 2002.
    [47] B. O. Guan, H. Y. Tam, S. L. Ho, W. H. Chung, X. Y. Dong, “Simultaneous strain and temperature measurement using a single fiber Bragg grating,” IEE Electronics Letters, vol. 36, no. 12, pp. 1018-1019, 2000.
    [48] B. A. L. Gwandu, X. Shu, Y. Liu, W. Zhang, L. Zhang, I. Bennion, “Simultaneous and independent sensing of arbitrary temperature and bending using sampled fiber Bragg grating,” IEE Electronics Letters, vol. 37, no. 15, pp. 946-948, 2001.

    QR CODE