簡易檢索 / 詳目顯示

研究生: 張偉庭
Wei-Ting Chang
論文名稱: 兼具高功率與長脈衝之摻鐿光纖雷射:設計與實現
Design and Implement of High-power and Long-pulse Ytterbium-Doped Fiber Laser
指導教授: 廖顯奎
Shien-Kuei Liaw
口試委員: 廖顯奎
Shien-Kuei Liaw
李三良
San-Liang Lee
吳文方
Wen-Fang Wu
項維巍
Wei-Wei Hsiang
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 83
中文關鍵詞: 光纖環形雷射長脈衝雷射摻鐿光纖放大器偏振疊加波鎖模淨膚除毛
外文關鍵詞: Fiber ring laser, Long pulsed laser, Ytterbium-doped fiber amplifier, Polarization additive-pulse mode locking, Skin-cleaning, Hair removal
相關次數: 點閱:276下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來醫療美容的需求越來越廣泛,人們可能因為重大事故造成身體外表的損害或者對自己的容貌不夠滿意而尋求醫療美容的幫助,以此達成生理與心理的需求。醫療美容又以雷射的方式最為廣泛,像是以雷射除斑、除疤或是除毛等對於皮膚的醫療為重。因此本論文將研製1040 nm的長脈衝光纖雷射,首先架設光纖環形雷射,使用DFB雷射泵激摻鐿光纖產生放大自發輻射並製作環形共振腔使光子共振,我們測試改變摻鐿光纖長度、分光比對雷射的影響,最佳結果在摻鐿光纖長度為150 cm並且分光比為80/20時有著光信雜比(OSNR)為36.09dB與15.78 mW的最佳輸出結果,並且在加上光纖布拉格光柵後,光信雜比能夠提升至40.456 dB,接著基於環形雷射架構使用偏振疊加波鎖模的方式製作長脈衝雷射,當輸入功率為301.6 mW,在共振腔長為8.7 m時脈衝寬度為17 ns,脈衝重複率為18.5 MHz,換算後脈衝能量與尖峰功率為87.5 pJ與0.031 W,將共振腔增長至1054 m時,脈衝寬度為650 ns,脈衝重複率為181.8 kHz,換算後脈衝能量與尖峰功率為27.5 nJ與0.042 W,並以主振盪功率放大器的架構製作摻鐿光纖放大器,採用雙前向泵激的方式進行放大,並在輸出端加上模場轉換元件將大模場轉換為單模輸出,最終測試結果當兩顆泵激雷射電流為2.25 A時,摻鐿光纖長度為3 m時有著20.4 dB的最佳增益,最終輸出功率為505.7 mW,脈衝寬度為1.158 μs,脈衝重複率為181.1 kHz,換算後脈衝能量與尖峰功率為2.7 μJ與2.41 W,在動物實驗部分,透過不同輸出功率分別打在老鼠的背部,並在顯微鏡下觀察,在功率提升後將對老鼠造成淨膚的效果。


    In recent years, the demand for medical cosmetology has become more and more extensive. People may seek medical cosmetology help because of major accidents causing physical damage or unsatisfactory appearance to meet their physical and psychological needs. Medical cosmetology is the most widely used method of laser, such as laser spot removal, scar removal or hair removal, etc. for skin care. Therefore, this paper will develop a long pulse fiber laser of 1040 nm. First, set up a fiber ring laser, use DFB laser to pump Ytterbium fiber to generate amplified spontaneous emission (ASE) and make a ring resonator to resonate the photons. We test to change the length of ytterbium fiber and splitting ratio on the laser, the best result is when the length of Ytterbium-doped fiber is 150 cm and the splitting ratio is 10/90, there is the best output result of OSNR of 39.354 dB and 5.341 mW. And after adding the fiber Bragg grating (FBG), The OSNR can be increased to 40.456 dB. And then a long pulse laser is made based on the ring laser architecture using polarization additive-pulse mode locking(P-APM). When the input power is 301.6 mW and the resonant cavity length is 8.7 m, the pulse width is 17 ns. The repetition rate is 18.5 MHz. After conversion, the pulse energy and peak power are 87.5 pJ and 0.031 W respectively. When the cavity is increased to 1054 m, the pulse width is 650 ns, and the pulse repetition rate is 181.8 kHz. After conversion, the pulse energy and peak power are 27.5 nJ and 0.042 W respectively. Ytterbium-doped fiber amplifier is made with the structure of master oscillator power amplifier (MOPA). Double forward pumping is adopted for amplification, and the mode field adapter is added at the output end to convert the large mode field into single mode output. The final test results when the two pump laser currents are 2.25 A, the Ytterbium-doped fiber has the best gain of 16.064 dB when the length is 3 m, the final output power is 505.7 mW, the pulse width is 1.158 μs, and the pulse repetition rate is 181.1 kHz, the converted pulse energy and peak power are 2.7 μJ and 2.41 W respectively, which is expected to be used in skin treatment. In the animal experiment part, the rats were hit on the backs of rats with different output powers and observed under a microscope. After the power was increased, the rats would have a skin-cleaning effect.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 表目錄 VIII 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 論文架構 3 第二章 光纖雷射與光被動元件簡介 4 2.1 光纖雷射 4 2.1.1 摻鐿光纖放大原理 4 2.1.2 光纖雷射原理 7 2.2光纖脈衝雷射 10 2.2.1 Q開關原理 10 2.2.2 鎖模雷射原理 11 2.2.2.1偏振疊加波鎖模 14 2.3 被動元件簡介 15 2.3.1 光纖布拉格光柵 15 2.3.2 光隔離器 17 2.3.3 光耦合器 17 2.3.4 光循環器 18 2.3.5 分波多工器 19 2.3.6 極化控制器 19 2.4 文獻探討 20 第三章 鎖模摻鐿光纖雷射 24 3.1半導體雷射特性量測 24 3.1.1半導體雷射簡介 24 3.1.2 半導體雷射特性量測 25 3.2鎖模摻鐿光纖雷射研製 27 3.2.1 光纖環形雷射架構 27 3.2.2 鎖模雷射架構 37 第四章 高功率摻鐿光纖放大器 44 4.1 高功率摻鐿光纖放大器介紹 44 4.1.1 高功率泵激雷射介紹 44 4.1.2 摻鐿光纖放大器泵激型態 46 4.1.3 主振盪功率放大器介紹 48 4.2 放大器架構製作與參數探討 50 4.2.1 放大器架構研製 50 4.2.2 放大器特性量測 52 第五章 結合脈衝與功率放大器及應用 55 5.1 結合架構分析 55 5.2 輸出量測結果 57 第六章 結論與未來展望 65 6.1 結論 65 6.2 未來展望 66 參考文獻 68

    [1] M. Yamanari, Y. Lim, S. Makita, and Y. Yasuno,"Visualization of phase retardation of deep posterior eye by polarization-sensitive swept-source optical coherence tomography with 1-µm probe, " Optics Express, vol. 17, no. 15, pp. 12385-12396, 2009.
    [2] M. Fujiwara, H. Hamaguchi, and M. Tasumi, "Measurements of spontaneous raman scattering with Nd:YAG 1064-nm laser light," Appl. Spectrosc. 40, 137-139, 1986.
    [3] K. C. Kao and G. A. Hockham, "Dielectric-fibre surface waveguides for optical frequencies," IEE Proceedings J - Optoelectronics, vol. 133, no. 3, pp. 191-198, 1986.
    [4] G. Keiser, “Optical fiber communications,” McGraw-Hill, New York, USA, 4th ed., 2008.
    [5] J. Zhang, P. Lei, S. Hu, M. Zhu, Z. Yu, B. Xu, and K. Qiu, "Functional-link neural network for nonlinear equalizer in coherent optical fiber communications," IEEE Access, vol. 7, pp. 149900-149907, 2019.
    [6] 蔡孟軒,“布里淵光時域分析系統之解析度與雙參數量測優化”,碩士論文,國立臺灣科技大學光電工程研究所,2020。
    [7] H. Niino, Y. Harada, K. Anzai, M. Matsushita, K. Furukawa, M. Nishino, A. Fujisaki, and T. Miyato, "Laser cutting of carbon fiber reinforced plastics (CFRP) by fiber laser irradiation," 2013 Conference on Lasers and Electro-Optics Pacific Rim (CLEOPR), Kyoto, Japan, 2013.
    [8] O. B. Jensen, A. K. Hansen, A. Müller, B. Sumpf, A. Unterhuber, W. Drexler, P. M. Petersen, and P. E. Andersen, "Power scaling of nonlinear frequency converted tapered diode lasers for biophotonics," IEEE J. Sel. Top. Quant. Electron., vol. 20, no. 2, pp. 307-321, 2014.
    [9] 翁俊仁, 許巍耀, 施至柔, 黃升龍, “綜觀高功率光纖雷射及其相關技術.” 科儀新知, no.158, pp. 13-23, 2007.
    [10] E. Snitzer, H. Po, F. Hakimi, R. Tumminelli, and B. C. McCollum, "Double clad, offset core Nd fiber laser," Optical Fiber Sensors, Vol. 2 of OSA Technical Digest Series, 1988
    [11] M. Eilchi, P. Parvin, “Gain saturation in optical fiber laser amplifiers,” Fiber Laser, InTech, London, UK, pp. 297-320, 2016
    [12] B. Denker, E. Shklovsky, “Handbook of solid-state lasers,” Woodhead, Sawston, UK, pp. 403-462, 2013
    [13] U. Sonja, L. Florian, A. Claudia, L. Martin, S. Anka, K. Jens, D. Jan, S. Kay, and B. Hartmut, “A highly efficient Yb-doped silica laser fiber prepared by gas phase doping technology,” Laser Physics, vol. 24, no.3, pp. 035103, 2014.
    [14] 許宏銘,“摻鐿光纖雷射/放大器與短脈衝產生研究”,台灣科技大學電子工程研究所碩士論文,2020。
    [15] Pedrotti, Frank L., Leno M. Pedrotti, and Leno S. Pedrotti, “Introduction to optics,” Cambridge University Press, Cambridge, UK, 2017.
    [16] C. Barnard, P. Myslinski, J. Chrostowski, and M. Kavehrad, "Analytical model for rare-earth-doped fiber amplifiers and lasers," IEEE J. Quant. Electron., vol. 30, no. 8, pp. 1817-1830, 1994.
    [17] H. J. Dutton, “Understanding optical communications.” USA: Prentice Hall PTR, vol. 1. Durham, North Carolina, 1998.
    [18] 曾瀞萱,“全光纖式之被動 Q 開關鉺鐿共摻光纖雷射: 設計與實現”,碩士論文,國立臺灣科技大學光電工程研究所,2016。
    [19] 陳紀暐,“先進固態雷射技術與應用”,碩士論文,國立交通大學理學院碩士在職專班應用科技學程,2007。
    [20] H. Wu, J. Song, J. Wu, J. Xu, H. Xiao, J. Leng, and P. Zhou, "Concave gold bipyramid saturable absorber based 1018 nm passively Q-switched fiber laser," IEEE J. Sel. Top. Quant. Electron., vol. 24, no. 3, pp. 1-6, 2018.
    [21] K. Thyagarajan, and A. Ghatak, “Lasers: fundamentals and applications,” Springer Science & Business Media, Berlin, Germany, 2010.
    [22] F. J. McClung and R. W. Hellwarth, "Characteristics of giant optical pulsations from ruby," Proceedings of the IEEE, vol. 51, no. 1, pp. 46-53, 1963.
    [23] D. Liang, and B. Samson, “Fiber lasers: basics, technology, and applications,” Crc Press, Florida, USA, 2016.
    [24] P. Myslinski, J. Chrostowski, J. A. Koningstein and J. R. Simpson, "High power Q-switched erbium doped fiber laser," IEEE J. Quant. Electron., vol. 28, no. 1, pp. 371-377, 1992.
    [25] U. A. Bakshi, and A. V. Bakshi, “Network analysis,” Technical Publications, India, 2014.
    [26] A. E. Siegman, “Lasers,” Mill Valley, Calif. : University Science Books, California, USA, 1986.
    [27] 陳鴻文,“具有高功率輸出之短脈衝光纖雷射: 設計與實現”,碩士論文,國立臺灣科技大學電子工程系,2017
    [28] K. Ivan, “Design and analysis of quantum dot laser (InAsP) for bio-photonic and mode-locking applications.” Diss. Cardiff University, 2018.
    [29] P. F. McManamon, ‘Field guide to lidar.’ SPIE Press, 2015.
    [30] 康峻維。”以鎖模光纖雷射在光纖上同時傳遞微波和光波頻率標準之研究”。碩士論文,國立交通大學光電工程系所,2008。
    [31] 黃莘為,“長波段光纖放大器與光纖雷射的研製與感測應用”,碩士論文,國立臺灣科技大學電子工程系,2017
    [32] G. Levy “The faraday isolator, detailed balance and the second law,” J. of Appl. Math. and Phys., vol. 5, no. 4, pp. 889-899, 2017
    [33] D. V. Nguyen, “Integrated-optics-based optical coherence tomography,” Universiteit van Amsterdam, 2013
    [34] R. Hui, “Introduction to fiber-optic communications.” Academic Press, 2019.
    [35] J. Chen, Y. Zhao, Y. Zhu, S. Liu and Y. Ju, "Narrow line-width ytterbium-doped fiber ring laser based on saturated absorber," IEEE Photon. Technol. Lett., vol. 29, no. 5, pp. 439-441, 2017
    [36] S. Boivinet, J. Lecourt, Y. Hernandez, A. A. Fotiadi, M. Wuilpart and P. Mégret, "All-fiber 1- μm PM mode-locklaser delivering picosecond pulses at sub-MHz repetition rate," IEEE Photon. Technol. Lett., vol. 26, no. 22, pp. 2256-2259, 2014.
    [37] X. Li, S. Liu, M. Liu, A. Luo, Z. Luo and W. Xu, "Vector effects of dissipative soliton in all-fiber MOPA system," IEEE Photon. J., vol. 11, no. 6, pp. 1-8, 2019
    [38] 許騰元,”利用軟微影技術製作可熱調控分佈式回饋雷射”,碩士論文,國立中山大學物理學系研究所,2013。
    [39] T. Aihara, T. Hiraki, K. Takeda, T. Fujii, T. Kakitsuka, T. Tsuchizawa, and S. Matsuo, "Membrane buried-heterostructure DFB laser with an optically coupled III-V/Si waveguide," Opt. Express, vol. 27, no.25, pp. 36438-36448, 2019
    [40] H. Kogelnik, and C. V. Shank. "Stimulated emission in a periodic structure." Appl. Phys. Lett., vol. 18, no. 4, pp. 152-154, 1971.
    [41] R. Hui, and M. O'Sullivan, “Fiber optic measurement techniques,” Academic Press, 2009.
    [42] X. Zhou, Z. Chen, H. Zhou, and J. Hou, "Mode-field adaptor between large-mode-area fiber and single-mode fiber based on fiber tapering and thermally expanded core technique," Appl. Opt., vol. 53, no. 22, pp. 5053-5057, 2014.

    無法下載圖示 全文公開日期 2026/07/26 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE