簡易檢索 / 詳目顯示

研究生: 伍祈馨
Chi-hsing Wu
論文名稱: 使用對稱及非對稱並聯段枝人工傳輸線研製 微型化微波元件及波束掃描天線模組
Development of Miniaturized Microwave Components and Beam-Scanning Phased Array Antenna Using Symmetrical and Asymmetrical Shunt-Stub-Based Artificial Transmission Lines
指導教授: 曾昭雄
Chao-Hsiung Tseng
口試委員: 瞿大雄
Tah-Hsiung Chu
黃建彰
Chien-Chang Huang
馬自莊
Tzyh-Ghuang Ma
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2010
畢業學年度: 99
語文別: 中文
論文頁數: 86
中文關鍵詞: 微型化分枝耦合器功率分配器電子式波束掃描相位陣列天線
外文關鍵詞: miniaturized, branch-line coupler, power divider, electronic beam-scanning phased array antenna
相關次數: 點閱:390下載:17
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要係使用對稱及非對稱並聯段枝人工傳輸線實現一系列微波主、被動電路,如分枝耦合器、功率分配器、電壓調控相位移器及電子式波束掃描相位陣列天線。在本論文中,傳統微帶線可被等效成一π型對稱人工傳輸線,其結構係由一段串聯的高阻抗微帶線及兩側低阻抗並聯段枝所構成。再將此低阻抗傳輸線等效成樹枝狀及準集總電容結構,搭配彎折技術則可將該人工傳輸線作更彈性之電路佈局,進一步達成電路縮小之目的。另一方面,傳統的微帶線亦可被等效成T型非對稱人工傳輸線,並利用此種人工傳輸線研製分枝耦合器,以改善耦合器微小化後之反射損耗頻寬縮小之問題。
    本論文中,利用π型對稱並聯段枝人工傳輸線為基礎,使用樹枝狀及準集總電容所研製之3-dB分枝耦合器,其電路面積可縮小為傳統電路之8 %及13.9 %。此外,6-dB分枝耦合器及功率分配器之電路面積縮小為傳統電路8.2 %及14.7 %。另一方面,利用非對稱人工傳輸線則可研製電路面積縮小為傳統電路16 %, 16.9 %及22.3 %之三型3-dB分枝耦合器。實驗結果驗證,使用非對稱人工傳輸線除可有效縮小電路面積,亦可提供傳統分枝耦合器相近之反射損耗頻寬。
    最後,本論文將第二章分枝耦合器之設計概念應用於研製阻抗轉換分枝耦合器,據以實現電壓調控反射式相位移器。再將第二章所研製之功率分配器輸出端接上兩相位移器,並結合偶極天線,則可整合成電子式波束掃描相位陣列天線。


    In this thesis, the shunt-stub-based artificial line (SSB ATL) and asymmetrical shunt-stub-based artificial transmission lines (ASSB ATL) have been applied to develop compact planar branch-line couplers and Wilkinson power divider. Then they are employed to design a refection-type phase shifter and a two-element beam-scanning phase array antenna. A conventional microstrip line can be equivalent to an SSB ATL realized by a series high-impedance microstrip line with bilateral low-impedance shunt stubs. The low-impedance stubs can be further replaced by branch-type and distributed-capacitor structures for the circuit size miniaturization. On the other hand, a conventional microstrip line also can be equivalent to an ASSB ATL and then employed to implement the bandwidth-enhanced branch-line coupler.
    Compact 3-dB branch-line couplers with branch-type and distributed capacitor structures respectively occupy about 8% and 13.9% circuit size of the conventional coupler at 0.9 GHz. The developed power divider using π-equivalent SSB ATLs occupies 14.7% circuit size as compared with the conventional case. In addition, the ASSB ATLs are used to improve the return loss bandwidth of the compact couplers. The three types of the developed couplers have 16 %, 16.9 %, and 22.3 % circuit sizes as compared with conventional structures.
    Furthermore, the SSB ATLs can be adopted to implement an impedance-transforming branch-line coupler, and then applied to design an electronic reflection-type phase shifter. As integrating with the developed compact Wilkinson power divider, one can achieve a two-element beam-forming network. Then connecting two dipole antennas with the output ports of the beam forming network, the electronic beam-scanning phased array antenna can be successfully developed.

    摘要 i 目錄 iii 第一章 緒論 1 1-1微波並聯段枝人工傳輸線簡介 1 1-2 研究動機 2 1-3 章節說明 3 第二章 使用並聯段枝人工傳輸線研製微型化分枝耦合器及功率分配器 4 2-1 π型並聯段枝人工傳輸線 4 2-2微型化分枝耦合器研製 8 2-2-1 3-dB 分枝耦合器研製 9 2-2-2 6-dB 分枝耦合器研製 18 2-3微型化功率分配器研製 22 第三章 利用非對稱並聯段枝人工傳輸線研製微型化分枝耦合器 27 3-1 非對稱並聯段枝人工傳輸線 27 3-2 微型化分枝耦合器研製 30 3-3使用任意阻抗比之非對稱人工傳輸線研製微型化分枝耦合器 34 第四章 電子式相位移器及陣列天線之研製 46 4-1 阻抗轉換分枝耦合器設計 46 4-2 相位移器研製 52 4-2-1相位移器設計 52 4-2-2相位移器量測結果 54 4-3 電子式波束掃描相位陣列天線之研製 57 4-3-1線性陣列天線理論 58 4-3-2電子式相位合成網路 59 4-3-3電子式波束掃描相位陣列天線研製 62 第五章 結論 68 參考文獻 70 附錄A SMV1235 Varactor 規格 74

    [1] C.-W. Tang, and M.-G. Chen, “Synthesizing microstrip branch-line couplers with predetermined compact size and bandwidth,” IEEE Trans. Microw. Theory Tech., vol. 55, pp. 1926–1933, Sep. 2007.
    [2] C.-W. Tang, and M.-G. Chen, “Miniaturization of microstrip branch-line coupler with dual transmission lines,” IEEE Microw. Wireless Compon. Lett., vol. 18, pp. 185–187, Mar. 2008.
    [3] C.-W. Wang, K.-H. Li, C.-J. Wu, and T.-G. Ma, “A Miniaturized Wilkinson Power Divider with Harmonic Suppression Characteristics Using Planar Artificial Transmission Lines,” in Proc. 19th Asia-Pacific Microwave Conf., Bangkok, Thailand, Dec. 2007.
    [4] C.-W. Tang, J.-W. Sheen, and C.-Y Chang, “Chip-type LTCC-MLC baluns using the stepped impedance method,” IEEE Trans. Microw. Theory Tech., vol. 49, pp. 2342–2349, Dec. 2001.
    [5] C.-H Tseng, and H.-J Chen, “Compact rat-race coupler using shunt-stub-based artificial transmission lines,” IEEE Microw. Wireless Compon. Lett., vol. 18, pp. 734-736, Nov. 2008.
    [6] C.-H Tseng, “Compact LTCC rat-race couplers using multilayered phase-delay and phase-advance T-equivalent sections,” IEEE Trans. Adv. Packag., no. 2, pp. 543-551, May 2010.
    [7] C.-W. Wang, T.-G. Ma, and C.-F. Yang, “A new planar artificial transmission line and its applications to a miniaturized Butler matrix,” IEEE Trans. Microw. Theory Tech., vol. 12, pp. 2792-2801, Dec. 2007.
    [8] C.-F. Chen, T.-Y. Huang, and R.-B. Wu, “Novel compact net-type resonators and their applications to microstrip bandpass filiters,” IEEE Trans. Microw. Theory Tech., vol. 54, pp. 755-762, Feb. 2006.
    [9] D. M. Pozar, Microwave Engineering, 2nd ed. New York: John Wiley & Sons, 1998.
    [10] K. W. Eccleston, S. H. M. Ong, “Compact planar microstripline branch-line and rat-race couplers and harmonic suppression Wilkinson power divider with short circuit anti-coupled line,” IEEE Trans. Microw. Theory Tech., vol. 51, pp. 2119-2125, Oct. 2003.
    [11] S.-S Liao, P.-T Sun, N.-C Chin, and J.-T. Peng, “A novel compact-size branch-line coupler,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 9, pp. 588-590, Sep. 2005.
    [12] K.-O. Sun, S.-J. Ho, C.-C. Yen, and D. V. D. Weide, “A compact branch-line coupler using discontinuous microstrip lines,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 8, pp. 519-520, Aug. 2005.
    [13] S.-C. Jung, R. Negra, and F. M. Ghannouchi, “A design methodology for miniaturized 3-dB branch-line hybrid couplers using distributed capacitors printed in the inner area,” IEEE Trans. Microw. Theory Tech., vol. 56, pp. 2950-2953, Dec. 2008.
    [14] S.-S Liao, and J.-T. Peng, “Compact planar microstrip branch-line couplers using the quasi-lumped elements approach with nonsymmetrical and symmetrical T-shaped structure,” IEEE Trans. Microw. Theory Tech., vol. 54, pp. 3508-3514, Sep. 2006.
    [15] J. Wang, B. Z. Wang, Y.-X. Guo, L.-C. Ong, and S. Xiao “A compact slow-wave microstrip branch-line coupler with high performance,” IEEE Microw. Wireless Compon.Lett, vol. 17, pp. 501-503, Jul. 2007.
    [16] H. Ghali and T. A. Moselhy, “Miniaturized Fractal Rat-Race, Branch-Line, and coupled-line hybrids,” IEEE Trans. Microw. Theory Tech., vol. 52, pp. 2513–2520, Nov. 2004.
    [17] 張盛富、戴明鳳,無線通信之射頻被動電路設計,全華科技圖書股份有限公司,2003年。
    [18] J. Zhang, L. Li, J. Gu, and X. Sun, “Compact and Harmonic Suppression Wilkinson power divider with short circuit anti-coupled line,” IEEE Microw. Wireless Compon. Lett., vol. 17, pp. 661-663, Sep. 2007.
    [19] F. Zhang, and C. F. Li, “Power divider with microstrip electromagnetic bandgap element for miniaturization and harmonic rejection,” Electron. Lett., vol. 44, no. 6, pp. 422-423, Mar. 2008.
    [20] D. H. Lee, Y. B. Park, and Y. Yun, “Highly miniaturized Wilkinson power divider employing -type multiple coupled microstrip line structure,” Electron. Lett., vol. 42, no. 13, pp. 763-765, Jun. 2006.
    [21] J. Wang, J. Ni, Y.-X. Guo, and D. Fang, “Miniaturized microstrip Wilkinson power divider with harmonic suppression,” IEEE Microw. Wireless Compon. Lett., vol. 19, pp. 440-442, Jul. 2009.
    [22] J. Yang, C. Gu, and W. Wu, “Design of novel compact coupled microstrip power divider with harmonic suppression,” IEEE Microw. Wireless Compon. Lett., vol. 18, pp. 572-574, Sep. 2008.
    [23] M. C. Scardelletti, G. E. Ponchak, and T. M. Weller, “Miniaturized Wilkinson power dividers utilizing capacitive loading,” IEEE Microw. Wireless Compon. Lett., vol. 12, pp. 6-8, Jan. 2002.
    [24] W.R. Eisenstadt and Y. Eo,” S-parameter-based IC interconnect transmission line characterization”, IEEE Trans. Comp., Hybrids, Manuf. Technol., vol. 15, pp. 483-490, Aug.1992
    [25] R. Mongia, I. Bahl, and P. Bhartia, RF and Microwave Coupled Line Circuits. Artech House, 1999
    [26] R. K. Gupta, S. E. Anderson, and W. J. Getsinger, “Impedance-transforming 3-dB 90° hybrids,” IEEE Trans. Microw. Theory Tech., vol.MTT-35, pp. 1303–1307, Dec. 1987.
    [27] C.-S. Lin, S.-F. Chang, C.-C. Chang, and Y.-H. Shu, “Design of a Reflection-Type Phase Shifter With Wide Relative Phase Shift and Constant Insertion Loss ,” IEEE Trans. Microw. Theory Tech., vol.55, pp. 1862–1868, Sep. 2007.
    [28] C.-S. Lin, S.-F. Chang, and W.-C. Hsiao, “A Full-360 Reflection-Type Phase Shifter With Constant Insertion Loss,” IEEE Microw. Wireless Compon. Lett., vol.18, pp. 106–108, Feb. 2008.
    [29] Z. Mao, F. Yong, “Improvement of the Design of Switched-Line Phase Shifter,” Proceedings of China-Japan Joint Microwaves Conference 2008, pp. 78-80, Shanghai, Sep. 2008.
    [30] H.-A. ATWATER, “Circuit Design of the Loaded-Line Phase Shifter,” IEEE Trans. Microw. Theory Tech., vol.MTT-33, pp. 626–634, Jul. 1985.
    [31] John D. Kraus and Ronald J. Marthefka, Antennas For All Applications, 3rd ed. New York:McGraw-Hill,2003.
    [32] H.-M Chen, J.-M. Chen,P.-S Cheng and Y.-F. Lin, “Feed for dual-band printed dipole antenna,” Electron. Lett., vol. 40. no.21, pp. 1320-1322, Oct. 2004.

    QR CODE