簡易檢索 / 詳目顯示

研究生: Sathiyalingam Kannaiyan
Sathiyalingam Kannaiyan
論文名稱: 奈米Nb2O5對AZ31合金基奈米複合材料微結構和機械性質的影響
Effect of Nano-Nb2O5 on the Microstructure and Mechanical Properties of AZ31 Alloy Matrix Nanocomposites
指導教授: 黃崧任
Song-Jeng Huang
口試委員: 丘群
Chun Chiu
李天錫
Lee, Tien-Hsi
林景崎
Lin, Jing-Chie
曾有志
Yu-Chih Tzeng
林新智
Hsin-Chih Lin
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 109
中文關鍵詞: 納米複合材料顯微結構延展性錯位斷口術
外文關鍵詞: Nanocomposites, Microstructures, Ductility, dislocations, fractography
相關次數: 點閱:231下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 當前十年的大部分研究都集中在提高車輛性能和發動機效率上。 材料的選擇在決定產品的質量、成本和環保方面起著重要作用。 近年來,鎂合金作為鑄鐵、鋁和聚合物的替代品越來越受歡迎。 鎂金屬基複合材料可以提供值得注意的特性,因為它具有輕質特性和高強度重量比。 在本研究中,採用攪拌鑄造法從鎂合金 AZ31 和五氧化二鈮 (Nb2O5) 增強材料中製備金屬基複合材料。 鑄造樣品在 410°C 下均勻化 24 小時,突然淬火,然後在 200°C 下時效 10 小時,然後在爐中冷卻至室溫。 應用等通道角壓 (ECAP) 技術使老化樣品變形。 使用配備能譜儀 (EDS) 的掃描電子顯微鏡 (SEM) 研究 Nb2O5 顆粒、熱處理和嚴重塑性變形對微觀結構的影響,並使用 X 射線衍射 (XRD) 探針檢查 相組成。 維氏硬度計和 MTS-100 萬能測試儀用於測量複合材料的機械性能。 AZ31/Nb2O5 納米複合材料是通過用 100 nm Nb2O5 和 3 wt. 增強 AZ31B 製備的。 % 和 6 重量。 % 分別。 結果表明,Nb2O5 納米粒子分佈均勻,增強材料與基體之間具有有效的附著力,孔隙率極小,表明該加工方法是有效的。 Nb2O5 顆粒的加入顯著改變了整體式 AZ31 合金的微觀結構。 顯微組織分析表明復合材料主要由初生α-鎂相和相β-Mg17Al12二次相組成。 AZ31/ Nb2O5 納米複合材料顯示晶粒尺寸及其層狀形狀 (β-Mg17Al12) 逐漸細化。 由於在鑄態、時效和 ECAP 樣品中添加 Nb2O5 顆粒,複合材料的硬度、強度和延展性等機械性能顯著提高。


    Most research in the current decade is focused on improving the performance of vehicles and the efficiency of engines. The choice of material plays a significant role in determining the quality, cost, and environmentally friendly aspects of a product. In recent years, magnesium alloys have become increasingly popular as alternatives to cast iron, aluminum, and polymers. A magnesium metal matrix composite can provide noteworthy attributes because of its lightweight properties and high strength-to-weight ratio. In the present study, the stir casting method was used to fabricate a metal matrix composite from magnesium alloy AZ31 and Niobium Pentoxide (Nb2O5) reinforcement. As cast sample was homogenized at 410°C for 24 hours, quenched suddenly, then aged at 200°C for 10 hours, and then allowed to cool in the furnace to room temperature. An equal channel angular pressing (ECAP) technique was applied to deform aged samples. A scanning electron microscope (SEM) equipped with energy dispersive spectroscopy (EDS) was used to study the effects of Nb2O5 particles, heat treatment, and severe plastic deformation on the microstructures, and an X-ray diffraction (XRD) probe was utilized to examine the phase compositions. A Vicker hardness tester and an MTS-100 universal tester were used to measure the composite's mechanical properties. AZ31/Nb2O5 nano-composites had been prepared by reinforcing AZ31B with 100 nm Nb2O5 with 3 wt. % each and 6 wt. % respectively. The results showed uniform distribution of Nb2O5 nanoparticles, effective adhesion between reinforcement and matrix, and minimal porosity, suggesting the processing methodology was effective. The inclusion of the Nb2O5 particles altered the monolithic AZ31 alloy microstructures significantly. The microstructure analysis showed that the composites are mainly composed of the primary α-magnesium phase and phase β-Mg17Al12 secondary phase. The AZ31/Nb2O5 nanocomposites revealed that the grain size and its lamellar shape (β-Mg17Al12) were gradually refined. The mechanical properties such as hardness, strength, and ductility of the composites were significantly enhanced due to the addition of Nb2O5 particles in the as-cast condition, aged and ECAP samples.

    Table of contents 摘要 ii Abstract iii Acknowledgment iv List of figures ix List of tables xii Chapter 1 1 Introduction 1 1.1 Motivation 1 1.2 Composites 2 1.3 Metal matrix composites (MMCs) 5 1.4 Research layout 10 Chapter 2 11 Background 11 2.1. Introduction of Magnesium alloy 11 2.1.1. Effects of Aluminum 13 2.1.2. Effect of Zinc 13 2.1.3. Effect of Manganese 13 2.1.4. Effects of Iron 13 2.1.5. Effects of Silicon 14 2.1.6. Rare earth metals 14 2.2. Phase diagram of Magnesium-aluminum (Mg-Al) 14 2.3. Effect of reinforcement size, shape, and volume fractions 16 2.4. Effect of single-particle reinforcement on Mg alloys 17 2.4.1 Choice of Nb2O5…………………………………………………………………….18 2.5. Deformation in Magnesium alloys 19 2.6. Mechanisms of the interfacial structural integrity of micro/nano reinforcement and matrix 21 2.6.1. Strengthening mechanisms of MMCs 21 2.6.1.1. Hall-Petch strengthening (Grain-boundary strengthening) 22 2.6.1.2. Coefficients of thermal expansion (CTE) and elastic modulus (EM) mismatches 22 2.6.1.3. Orowan strengthening 23 2.6.1.4. Load transfer strengthening 24 2.6.1.5. Overall yield strength 24 2.6.2. Strength weakening effects 24 2.7 Objectives 26 Chapter 3 28 Fabrication Methods and Experimental Procedures 28 3.1. Fabrication methodologies 28 3.1.1. Liquid state processing 29 3.1.1.1 Stir casting 29 3.1.1.2 Infiltration 31 3.1.2. Solid-state processing 33 3.1.2.1 Powder metallurgy 33 3.1.2.2 Diffusion bonding 34 3.1.3. In-situ processing 35 3.2. Secondary heat treatment processes 36 3.2.1. Heat treatment processes 37 3.2.1.1. Homogenization heat treatment 37 3.2.1.2. Solution heat treatment 38 3.2.1.3. Ageing heat treatment 38 3.2.2. Plastic deformation processes 39 3.2.2.1. Equal-channel angular pressing (ECAP) 41 3.3. Experimental procedures 42 Chapter 4 45 Effect of Nano-Nb2O5 on the Microstructure and Mechanical Properties of AZ31 Alloy Matrix Nanocomposites 45 4.1. Introduction 45 4.2. Experimental Procedures 47 4.2.1 Composite Preparation 47 4.3. Result and Discussion 50 4.3.1 XRD Analysis 50 4.3.2 Microstructural characteristics 52 4.3.3 Porosity and Density 55 4.4. Effect of Nb2O5 on the Mechanical Properties of AZ31 56 4.4.1. Microhardness 56 4.4.2 Tensile Properties 57 4.4.3 Fractography 63 4.5 Summary 65 Chapter 5 67 Enhancement of Mechanical behaviors and Microstructure Evolution of Nano-Nb2O5/AZ31 Composite Processed by Equal Channel Angular Pressing (ECAP) 67 5.1. Introduction 67 5.2. Experimental Procedures 69 5.2.1 Composite Preparation 69 5.3. RESULT AND DISCUSSION 72 5.3.1 Microstructural characteristics 72 5.3.2 XRD Analysis 77 5.4 Mechanical Properties 81 5.4.1 Microhardness 81 5.4.2 Tensile Properties 81 5.4.3 Fractography 86 5.5 Summary 90 Chapter 6 91 Conclusion 91 Future work: 93 Publications: 93 References 94

    [1] I. Polmear, D. StJohn, J.-F. Nie, M. Qian, The Light Metals, Light Alloy. (2017) 1–29. https://doi.org/10.1016/b978-0-08-099431-4.00001-4.
    [2] A.E. Bogdanovich, R.L. Sierakowski, Composite materials and structures: Science, technology and applications: A compendium of books, review papers, and other sources of information, Appl. Mech. Rev. 52 (1999) 351–366. https://doi.org/10.1115/1.3098921.
    [3] G.D. Shaffer, An archaeomagnetic study of a wattle and daub building collapse, J. F. Archaeol. 20 (1993) 59–75. https://doi.org/10.1179/009346993791974334.
    [4] D. Taylor, Composites: Brittle Fracture in Fibre Composite Materials, Theory Crit. Distances. (2007) 141–161. https://doi.org/https://doi.org/10.1016/B978-008044478-9/50009-0.
    [5] E.. Barbero, Introduction to Composite Materials Design (2nd ed.)., 2011. https://doi.org/https://doi.org/10.1201/9781439894132.
    [6] S.W.H.T.H. Tsai;, Introduction to composite materials, 2017. https://doi.org/10.1016/B978-0-08-100410-4.00001-6.
    [7] M.K. Egbo, A fundamental review on composite materials and some of their applications in biomedical engineering, J. King Saud Univ. - Eng. Sci. 33 (2021) 557–568. https://doi.org/10.1016/j.jksues.2020.07.007.
    [8] H. (Hartmut) S. Walter. Krenkel, R. (Roger) Naslain, Metal Matrix Composites Custom-made Materials for Automotive and Aerospace Engineering, in: Wiley-VCH, 2001.
    [9] K.U. Kainer, Metal Matrix Composites: Custom-made Materials for Automotive and Aerospace Engineering, 2006. https://doi.org/10.1002/3527608117.
    [10] N. Mazlan, S.M. Sapuan, R.A. Ilyas, Advanced Composites in Aerospace Engineering Applications, 2022. https://doi.org/https://doi.org/10.1007/978-3-030-88192-4.
    [11] H. (Eds. . Avedesian, M. M., & Baker, ASM Specialty Handbook: Magnesium and Magnesium Alloys, ASM International, 1999.
    [12] S. Abbas, A., Rajagopal, V., & Huang, Magnesium Metal Matrix Composites and Their Applications, in: Intech, 2021: p. 13. https://doi.org/https://doi.org/10.5772/intechopen.96241.
    [13] P. Clyne, T., & Withers, An Introduction to Metal Matrix Composites (Cambridge Solid State Science Series), Cambridge University Press, 1993. https://doi.org/10.1017/CBO9780511623080.
    [14] S. Rawal, Metal-Matrix Composites for Space Applications, JOM. (2001) 14–17. https://doi.org/https://doi.org/10.1007/s11837-001-0139-z.
    [15] K.K. Chawla, Composite Materials Science and Engineering, 1998.
    [16] T. Abbott, M. Easton, C. Ca´ceres, Designing with Magnesium, Handb. Mech. Alloy Des. (2004) 487–538. https://doi.org/10.1201/9780203913307.ch10.
    [17] M. Gupta, W.L.E. Wong, Magnesium-based nanocomposites: Lightweight materials of the future, Mater. Charact. 105 (2015) 30–46. https://doi.org/10.1016/j.matchar.2015.04.015.
    [18] H.E.F.· B.L. Mordike, Magnesium Technology Metallurgy, Design Data, Applications, Springer. (2006). https://doi.org/http://dx.doi.org/10.1007/ 3-540-30812-1.
    [19] G. Bamberger, M., & Dehm, Trends in the development of new Mg alloys., Annu. Rev. Mater. Res. (2008) 505-533.
    [20] M. Esmaily, J.E. Svensson, S. Fajardo, N. Birbilis, G.S. Frankel, S. Virtanen, R. Arrabal, S. Thomas, L.G. Johansson, Fundamentals and advances in magnesium alloy corrosion, Prog. Mater. Sci. 89 (2017) 92–193. https://doi.org/10.1016/j.pmatsci.2017.04.011.
    [21] S.V.S. Prasad, S.B. Prasad, K. Verma, R.K. Mishra, V. Kumar, S. Singh, The role and significance of Magnesium in modern day research-A review, J. Magnes. Alloy. 10 (2022) 1–61. https://doi.org/10.1016/j.jma.2021.05.012.
    [22] J.R. Davis, M. Park, Alloying: Understanding the basics. :, ASM Int. (2001).
    [23] H. Yang, B. Jia, Z. Zhang, X. Qu, G. Li, W. Lin, D. Zhu, K. Dai, Y. Zheng, Alloying design of biodegradable zinc as promising bone implants for load-bearing applications, Nat. Commun. 11 (2020) 1–16. https://doi.org/10.1038/s41467-019-14153-7.
    [24] R. Radha, D. Sreekanth, Insight of magnesium alloys and composites for orthopedic implant applications – a review, J. Magnes. Alloy. 5 (2017) 286–312. https://doi.org/10.1016/j.jma.2017.08.003.
    [25] S.N.M. Gupta, M., & Ling, Magnesium, magnesium alloys, and magnesium composites., 2011. https://doi.org/John Wiley & Sons.
    [26] A.K. Dahle, Y.C. Lee, M.D. Nave, P.L. Schaffer, D.H. StJohn, Development of the as-cast microstructure in magnesium-aluminium alloys, J. Light Met. 1 (2001) 61–72. https://doi.org/10.1016/S1471-5317(00)00007-9.
    [27] S. Barbagallo, H.I. Laukli, O. Lohne, E. Cerri, Divorced eutectic in a HPDC magnesium-aluminum alloy, J. Alloys Compd. 378 (2004) 226–232. https://doi.org/10.1016/j.jallcom.2003.11.174.
    [28] S. Richmire, K. Hall, M. Haghshenas, Design of experiment study on hardness variations in friction stir welding of AM60 Mg alloy, J. Magnes. Alloy. 6 (2018) 215–228. https://doi.org/10.1016/j.jma.2018.07.002.
    [29] Y. Hu, H., Nie, X., & Ma, Corrosion and Surface Treatment of Magnesium Alloys, IntechOpen, 2014. https://doi.org/https://doi.org/10.5772/58929.
    [30] J. Zhu, W. Yang, H. Yang, F. Wang, Effect of Nb2O5 on the microstructure and mechanical properties of TiAl based composites produced by hot pressing, Mater. Sci. Eng. A. 528 (2011) 6642–6646. https://doi.org/10.1016/j.msea.2011.04.062.
    [31] S. Banerjee, S. Poria, G. Sutradhar, P. Sahoo, Dry sliding tribological behavior of AZ31-WC nano-composites, J. Magnes. Alloy. 7 (2019) 315–327. https://doi.org/10.1016/j.jma.2018.11.005.
    [32] B.Q. Han, D.C. Dunand, Microstructure and mechanical properties of magnesium containing high volume fractions of yttria dispersoids, Mater. Sci. Eng. A. 277 (2000) 297–304. https://doi.org/10.1016/s0921-5093(99)00074-x.
    [33] M. Rashad, F. Pan, W. Guo, H. Lin, M. Asif, M. Irfan, Effect of alumina and silicon carbide hybrid reinforcements on tensile, compressive and microhardness behavior of Mg-3Al-1Zn alloy, Mater. Charact. 106 (2015) 382–389. https://doi.org/10.1016/j.matchar.2015.06.033.
    [34] M.S. Safavi, F.C. Walsh, L. Visai, J. Khalil-Allafi, Progress in Niobium Oxide-Containing Coatings for Biomedical Applications: A Critical Review, ACS Omega. 7 (2022) 9088–9107. https://doi.org/10.1021/acsomega.2c00440.
    [35] K.K. Alaneme, E.A. Okotete, Enhancing plastic deformability of Mg and its alloys—A review of traditional and nascent developments, J. Magnes. Alloy. 5 (2017) 460–475. https://doi.org/10.1016/j.jma.2017.11.001.
    [36] J. Cheng, S. Ghosh, A crystal plasticity FE model for deformation with twin nucleation in magnesium alloys, Int. J. Plast. 67 (2015) 148–170. https://doi.org/10.1016/j.ijplas.2014.10.005.
    [37] M.E. Hua Qiao, Numerical Study of Deformation Mechanisms in Hcp Metals, (2016).
    [38] M. Taya, Strengthening Mechanisms of Metal Matrix Composites, Mater. Trans. JIM. 32 (1991) 1–19. https://doi.org/https://doi.org/10.2320/matertrans1989.32.1.
    [39] R. Casati, M. Vedani, Metal matrix composites reinforced by Nano-Particles—A review, Metals (Basel). 4 (2014) 65–83. https://doi.org/10.3390/met4010065.
    [40] F.A. Mirza, D.L. Chen, A unified model for the prediction of yield strength in particulate-reinforced metal matrix nanocomposites, Materials (Basel). 8 (2015) 5138–5153. https://doi.org/10.3390/ma8085138.
    [41] X.G. Qiao, T. Ying, M.Y. Zheng, E.D. Wei, K. Wu, X.S. Hu, W.M. Gan, H.G. Brokmeier, I.S. Golovin, Microstructure evolution and mechanical properties of nano-SiCp/AZ91 composite processed by extrusion and equal channel angular pressing (ECAP), Mater. Charact. 121 (2016) 222–230. https://doi.org/10.1016/j.matchar.2016.10.003.
    [42] M.S.J.H. J. Hashim, L. Looney, Metal matrix composites: production by the stir casting method, J. Mater. Process. Technol. (1999) 1–7.
    [43] S.J. Huang, S. Diwan Midyeen, M. Subramani, C.C. Chiang, Microstructure evaluation, quantitative phase analysis, strengthening mechanism and influence of hybrid reinforcements (β-sicp, bi and sb) on the collective mechanical properties of the az91 magnesium matrix, Metals (Basel). 11 (2021). https://doi.org/10.3390/met11060898.
    [44] S.K. Thandalam, S. Ramanathan, S. Sundarrajan, Synthesis, microstructural and mechanical properties of ex situ zircon particles (ZrSiO4) reinforced Metal Matrix Composites (MMCs): A review, J. Mater. Res. Technol. 4 (2015) 333–347. https://doi.org/10.1016/j.jmrt.2015.03.003.
    [45] A. Kumar, O. Vichare, K. Debnath, M. Paswan, Fabrication methods of metal matrix composites (MMCs), Mater. Today Proc. 46 (2020) 6840–6846. https://doi.org/10.1016/j.matpr.2021.04.432.
    [46] A.F. and M.M. Ali Ghorbanpour Arani, The effect of nanoparticles on enhancement of the specific mechanical properties of the composite structures: A review research, Adv. Nano Res. 10 (2021) 327–337. https://doi.org/https://doi.org/10.12989/anr.2021.10.4.327.
    [47] A. Abbas, S.-J. Huang, Qualitative and Quantitative Investigation of As-Cast and Aged CNT/AZ31 Metal Matrix Composites, J. Miner. Met. Mater. Soc. 72 (2020) 2272–2282. https://doi.org/10.1007/s11837-020-04114-7.
    [48] M.H. Vini, S. Daneshmand, Effect of TIO2Particles on the Mechanical and Microstructural Evolution of Hybrid Aluminum-Based Composites Fabricated by Warb, Surf. Rev. Lett. 27 (2020) 99–107. https://doi.org/10.1142/S0218625X20500262.
    [49] L.Y. Chen, J.Q. Xu, H. Choi, M. Pozuelo, X. Ma, S. Bhowmick, J.M. Yang, S. Mathaudhu, X.C. Li, Processing and properties of magnesium containing a dense uniform dispersion of nanoparticles, Nature. 528 (2015) 539–543. https://doi.org/10.1038/nature16445.
    [50] A. Dey, K.M. Pandey, Magnesium metal matrix composites-a review, Rev. Adv. Mater. Sci. 42 (2015) 58–67.
    [51] M.J. Shen, M.F. Zhang, J.H. Jia, Deformation behavior and microstructure evolution of AZ31B composites containing multiscale distribution during room temperature tensile, J. Alloys Compd. 820 (2020) 153446. https://doi.org/10.1016/j.jallcom.2019.153446.
    [52] I. Dinaharan, S. Zhang, G. Chen, Q. Shi, Titanium particulate reinforced AZ31 magnesium matrix composites with improved ductility prepared using friction stir processing, Mater. Sci. Eng. A. 772 (2020) 138793. https://doi.org/10.1016/j.msea.2019.138793.
    [53] D. Sameer Kumar, K.N.S. Suman, C. Tara Sasanka, K. Ravindra, P. Poddar, S.B. Venkata Siva, Microstructure, mechanical response and fractography of AZ91E/Al2O3 (p) nano composite fabricated by semi solid stir casting method, J. Magnes. Alloy. 5 (2017) 48–55. https://doi.org/10.1016/j.jma.2016.11.006.
    [54] A. Khandelwal, K. Mani, N. Srivastava, R. Gupta, G.P. Chaudhari, Mechanical behavior of AZ31/Al2O3 magnesium alloy nanocomposites prepared using ultrasound assisted stir casting, Compos. Part B Eng. 123 (2017) 64–73. https://doi.org/10.1016/j.compositesb.2017.05.007.
    [55] M.Y. Zhou, L.B. Ren, L.L. Fan, Y.W.X. Zhang, T.H. Lu, G.F. Quan, M. Gupta, Progress in research on hybrid metal matrix composites, J. Alloys Compd. 838 (2020). https://doi.org/10.1016/j.jallcom.2020.155274.
    [56] I. Dinaharan, S.C. Vettivel, M. Balakrishnan, E.T. Akinlabi, Influence of processing route on microstructure and wear resistance of fly ash reinforced AZ31 magnesium matrix composites, J. Magnes. Alloy. 7 (2019) 155–165. https://doi.org/10.1016/j.jma.2019.01.003.
    [57] K.K. Alaneme, O.P. Adu, S.R. Oke, O.E. Falodun, P.A. Olubambi, Densification characteristics, microstructure and wear behaviour of spark plasma sintering processed titanium-niobium pentoxide (Ti-Nb2O5) based composites, J. King Saud Univ. - Eng. Sci. (2020). https://doi.org/10.1016/j.jksues.2020.10.005.
    [58] C. Silva, L.A. Montoro, D.A.A. Martins, P.A. Machado, P.H.R. Pereira, B.M. Gonzalez, T.G. Langdon, R.B. Figueiredo, A. Isaac, Interface structures in Al-Nb2O5 nanocomposites processed by high-pressure torsion at room temperature, Mater. Charact. 162 (2020) 110222. https://doi.org/10.1016/j.matchar.2020.110222.
    [59] K.K. Alaneme, A.A. Fatokun, S.R. Oke, P.A. Olubambi, Nanoindentation studies and analysis of the mechanical properties of Ti-Nb2O5 based composites, Manuf. Rev. 7 (2020). https://doi.org/10.1051/mfreview/2020017.
    [60] S.J. Huang, A.N. Ali, Effects of heat treatment on the microstructure and microplastic deformation behavior of SiC particles reinforced AZ61 magnesium metal matrix composite, Mater. Sci. Eng. A. 711 (2018) 670–682. https://doi.org/10.1016/j.msea.2017.11.020.
    [61] S.F. Hassan, M. Gupta, Effect of type of primary processing on the microstructure, CTE and mechanical properties of magnesium/alumina nanocomposites, Compos. Struct. 72 (2006) 19–26. https://doi.org/10.1016/j.compstruct.2004.10.008.
    [62] K.N. Zhao, H.X. Li, J.R. Luo, Y.J. Liu, Q. Du, J.S. Zhang, Interfacial bonding mechanism and mechanical properties of novel AZ31/WE43 bimetal composites fabricated by insert molding method, J. Alloys Compd. 729 (2017) 344–353. https://doi.org/10.1016/j.jallcom.2017.09.166.
    [63] K. Borodianskiy, M. Zinigrad, Mechanical Properties and Microstructure Characterization of Al-Si Cast Alloys Formation Using Carbide Nanoparticles, J. Mater. Sci. Appl. 1 (2015) 85–90.
    [64] V. Selivorstov, Y. Dotsenko, K. Borodianskiy, Influence of low-frequency vibration and modification on solidification and mechanical properties of Al-Si casting alloy, Materials (Basel). 10 (2017). https://doi.org/10.3390/ma10050560.
    [65] S.-J. Huang, M. Subramani, C.-C. Chiang, Effect of hybrid reinforcement on microstructure and mechanical properties of AZ61 magnesium alloy processed by stir casting method, Compos. Commun. 25 (2021) 100772. https://doi.org/10.1016/j.coco.2021.100772.
    [66] M.W. Rahman, Preparation of magnesium diniobate by solid–state reactions and its role for hydrogen storage, J. Aust. Ceram. Soc. 55 (2019) 579–586. https://doi.org/10.1007/s41779-018-0265-5.
    [67] A. Abbas, S.J. Huang, Investigating the hall-petch constants for as-cast and aged az61/cnts metal matrix composites and their role on superposition law exponent, J. Compos. Sci. 5 (2021). https://doi.org/10.3390/jcs5040103.
    [68] A.L. da Silva, D. Hotza, R.H.R. Castro, Surface energy effects on the stability of anatase and rutile nanocrystals: A predictive diagram for Nb 2 O 5 -doped-TiO 2, Appl. Surf. Sci. 393 (2017) 103–109. https://doi.org/10.1016/j.apsusc.2016.09.126.
    [69] M. Malaki, A.F. Tehrani, B. Niroumand, M. Gupta, Wettability in metal matrix composites, Metals (Basel). 11 (2021) 1–24. https://doi.org/10.3390/met11071034.
    [70] A. Abbas, S.J. Huang, Investigation of severe plastic deformation effects on microstructure and mechanical properties of WS2/AZ91 magnesium metal matrix composites, Mater. Sci. Eng. A. 780 (2020) 139211. https://doi.org/10.1016/j.msea.2020.139211.
    [71] S.J. Huang, A. Abbas, Effects of tungsten disulfide on microstructure and mechanical properties of AZ91 magnesium alloy manufactured by stir casting, J. Alloys Compd. 817 (2020) 153321. https://doi.org/10.1016/j.jallcom.2019.153321.
    [72] R. Flaminio, J. Franc, C. Michel, N. Morgado, L. Pinard, B. Sassolas, A study of coating mechanical and optical losses in view of reducing mirror thermal noise in gravitational wave detectors, Class. Quantum Gravity. 27 (2010). https://doi.org/10.1088/0264-9381/27/8/084030.
    [73] Y.N. Hou, K.M. Yang, J. Song, H. Wang, Y. Liu, T.X. Fan, A crystal plasticity model for metal matrix composites considering thermal mismatch stress induced dislocations and twins, Sci. Rep. 11 (2021) 1–13. https://doi.org/10.1038/s41598-021-95439-z.
    [74] P. Sathishkumar, V. Deepakaravind, P. Gopal, P. Azhagiri, Analysis the mechanical properties and material characterization on Magnesium Metal Matrix Nano composites through stir casting process, Mater. Today Proc. 46 (2021) 7436–7441. https://doi.org/10.1016/j.matpr.2021.01.041.
    [75] K.C.K. Kumar, B.R. Kumar, N.M. Rao, Microstructural, Mechanical Characterization, and Fractography of AZ31/SiC Reinforced Composites by Stir Casting Method, Silicon. 14 (2022) 5017–5027. https://doi.org/10.1007/s12633-021-01180-7.
    [76] K.B. Nie, X.J. Wang, K.K. Deng, X.S. Hu, K. Wu, Magnesium matrix composite reinforced by nanoparticles – A review, J. Magnes. Alloy. 9 (2021) 57–77. https://doi.org/10.1016/j.jma.2020.08.018.
    [77] J. Song, J. Chen, X. Xiong, X. Peng, D. Chen, F. Pan, Research advances of magnesium and magnesium alloys worldwide in 2021, J. Magnes. Alloy. 10 (2022) 863–898. https://doi.org/10.1016/j.jma.2022.04.001.
    [78] X. Chen, D. Zhang, J. Xu, J. Feng, Y. Zhao, Improvement of mechanical properties of hot extruded and age treated Mg e Zn e Mn e Ca alloy through Sn addition, J. Alloys Compd. 850 (2021) 156711. https://doi.org/10.1016/j.jallcom.2020.156711.
    [79] Y. Yang, X. Xiong, J. Chen, X. Peng, D. Chen, F. Pan, Research advances in magnesium and magnesium alloys worldwide in 2020, J. Magnes. Alloy. 9 (2021) 705–747. https://doi.org/10.1016/j.jma.2021.04.001.
    [80] S. Sepahi-Boroujeni, A. Sepahi-Boroujeni, Improvements in microstructure and mechanical properties of AZ80 magnesium alloy by means of an efficient, novel severe plastic deformation process, J. Manuf. Process. 24 (2016) 71–77. https://doi.org/10.1016/j.jmapro.2016.07.007.
    [81] T. Zhou, Q. Zhang, Q. Li, L. Wang, Q. Li, D. Liu, A simultaneous enhancement of both strength and ductility by a novel differential-thermal ECAP process in Mg-Sn-Zn-Zr alloy, J. Alloys Compd. 889 (2022) 161653. https://doi.org/10.1016/j.jallcom.2021.161653.
    [82] M.J. Shen, X.J. Wang, T. Ying, K. Wu, W.J. Song, Characteristics and mechanical properties of magnesium matrix composites reinforced with micron/submicron/nano SiC particles, J. Alloys Compd. 686 (2016) 831–840. https://doi.org/10.1016/j.jallcom.2016.06.232.
    [83] P.S. Bains, S.S. Sidhu, H.S. Payal, Fabrication and Machining of Metal Matrix Composites: A Review, Mater. Manuf. Process. 31 (2016) 553–573. https://doi.org/10.1080/10426914.2015.1025976.
    [84] A.H. Idrisi, A.H.I. Mourad, Conventional stir casting versus ultrasonic assisted stir casting process: Mechanical and physical characteristics of AMCs, J. Alloys Compd. 805 (2019) 502–508. https://doi.org/10.1016/j.jallcom.2019.07.076.
    [85] I. Dinaharan, S. Zhang, G. Chen, Q. Shi, Assessment of Ti-6Al-4V particles as a reinforcement for AZ31 magnesium alloy-based composites to boost ductility incorporated through friction stir processing, J. Magnes. Alloy. 10 (2022) 979–992. https://doi.org/10.1016/j.jma.2020.09.026.
    [86] S.-J. Huang, M. Subramani, C.-C. Chiang, Effect of hybrid reinforcement on microstructure and mechanical properties of AZ61 magnesium alloy processed by stir casting method, Compos. Commun. 25 (2021) 100772. https://doi.org/10.1016/j.coco.2021.100772.
    [87] Q. Xu, A. Ma, B. Saleh, Y. Li, Y. Yuan, J. Jiang, C. Ni, Enhancement of strength and ductility of SiCp/AZ91 composites by RD-ECAP processing, Mater. Sci. Eng. A. 771 (2020) 138579. https://doi.org/10.1016/j.msea.2019.138579.
    [88] A.H. Feng, Z.Y. Ma, Enhanced mechanical properties of Mg-Al-Zn cast alloy via friction stir processing, Scr. Mater. 56 (2007) 397–400. https://doi.org/10.1016/j.scriptamat.2006.10.035.
    [89] R.B. Figueiredo, T.G. Langdon, Principles of grain refinement and superplastic flow in magnesium alloys processed by ECAP, Mater. Sci. Eng. A. 501 (2009) 105–114. https://doi.org/10.1016/j.msea.2008.09.058.
    [90] C.S. Meredith, A.S. Khan, The microstructural evolution and thermo-mechanical behavior of UFG Ti processed via equal channel angular pressing, J. Mater. Process. Technol. 219 (2015) 257–270. https://doi.org/10.1016/j.jmatprotec.2014.12.024.
    [91] P. Minárik, K. Máthis, R. Ku, Materials Characterization In fl uence of equal channel angular pressing routes on texture , microstructure and mechanical properties of extruded AX41 magnesium alloy, 123 (2017) 282–293. https://doi.org/10.1016/j.matchar.2016.11.044.
    [92] M. Avvari, S. Narendranath, H.S. Nayaka, Effect of Processing Routes on AZ31 Alloy Processed By Severe Plastic Deformation, Procedia Mater. Sci. 5 (2014) 1560–1566. https://doi.org/10.1016/j.mspro.2014.07.343.
    [93] H.T. Jeong, W.J. Kim, Critical review of superplastic magnesium alloys with emphasis on tensile elongation behavior and deformation mechanisms, J. Magnes. Alloy. 10 (2022) 1133–1153. https://doi.org/10.1016/j.jma.2022.02.009.
    [94] S.J. Huang, A.N. Ali, Experimental investigations of effects of SiC contents and severe plastic deformation on the microstructure and mechanical properties of SiCp/AZ61 magnesium metal matrix composites, J. Mater. Process. Technol. 272 (2019) 28–39. https://doi.org/10.1016/j.jmatprotec.2019.05.002.
    [95] M. Avvari, S. Narendranath, H.S. Nayaka, Effect of Processing Routes on AZ31 Alloy Processed By Severe Plastic Deformation, Procedia Mater. Sci. 5 (2014) 1560–1566. https://doi.org/10.1016/j.mspro.2014.07.343.
    [96] H. Song-jeng, K. Sathiyalingam, S. Murugan, Effect of nano-Nb 2 O 5 on the microstructure and mechanical properties of AZ31 alloy matrix nanocomposites, Adv. Nano Res. an Int. J. 4 (2022) 407–416. https://doi.org/10.12989/anr.2022.13.4.407.
    [97] S.J. Huang, M. Subramani, K. Borodianskiy, Strength and ductility enhancement of AZ61/Al2O3/SiC hybrid composite by ECAP processing, Mater. Today Commun. 31 (2022) 103261. https://doi.org/10.1016/j.mtcomm.2022.103261.
    [98] S. Jeon, X. Liu, C. Azersky, J. Ren, S. Zhang, W. Chen, R.W. Hyers, K. Costa, M. Kolbe, D.M. Matson, Particle size effects on dislocation density, microstructure, and phase transformation for high-entropy alloy powders, Materialia. 18 (2021) 101161. https://doi.org/10.1016/j.mtla.2021.101161.
    [99] J. Cheng, J. hua Zhao, D. Zheng, K. He, Y. Guo, Effect of the Vacuum Heat Treatment on the Microstructure and Mechanical Properties of the Galvanized-Q235/AZ91D Bimetal Material Produced by Solid–Liquid Compound Casting, Met. Mater. Int. 27 (2021) 545–555. https://doi.org/10.1007/s12540-019-00503-z.
    [100] Z. Pei, H. Sheng, X. Zhang, R. Li, B. Svendsen, Tunable twin stability and an accurate magnesium interatomic potential for dislocation-twin interactions, Mater. Des. 153 (2018) 232–241. https://doi.org/10.1016/j.matdes.2018.04.085.
    [101] M.H. Yoo, Slip, twinning, and fracture in hexagonal close-packed metals, Metall. Trans. A. 12 (1981) 409–418. https://doi.org/10.1007/BF02648537.
    [102] C. Du, Y. Gao, Z.M. Hua, M. Zha, C. Wang, H.Y. Wang, Enhanced superplasticity achieved by disclination-dislocation reactions in a fine-grained low-alloyed magnesium system, Int. J. Plast. 154 (2022) 103300. https://doi.org/10.1016/j.ijplas.2022.103300.
    [103] F. Wang, S. Agnew, Dislocation-twin interactions in magnesium alloy AZ31, Magnes. Technol. 2015-Janua (2015) 139–144. https://doi.org/10.1002/9781119093428.ch27.
    [104] A. Muralidhar, S. Narendranath, H. Shivananda Nayaka, Effect of equal channel angular pressing on AZ31 wrought magnesium alloys, J. Magnes. Alloy. 1 (2013) 336–340. https://doi.org/10.1016/j.jma.2013.11.007.
    [105] K. Li, W. Shi, S. Tantipattarakul, A.S. Vaughan, T. Andritsch, D.T. Oyekunle, O. Agboola, A.O. Ayeni, The Deformation and Ageing of Mild Steel: III Discussion of Results, (1951).

    無法下載圖示 全文公開日期 2025/02/09 (校內網路)
    全文公開日期 2025/02/09 (校外網路)
    全文公開日期 2025/02/09 (國家圖書館:臺灣博碩士論文系統)
    QR CODE