簡易檢索 / 詳目顯示

研究生: 姚志杰
Chih-chieh Yao
論文名稱: 鑭鏑鉬氧電解質之單室固態氧化物燃料電池的功率提升
Power improvement of single chamber SOFC with (La1.8Dy0.2)Mo2O9 electrolyte
指導教授: 蔡大翔
Dah-Shyang Tsai
口試委員: 周振嘉
Chen-Chia Chou
鄭 淑 芬
Soo-fin, Cheng
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 115
中文關鍵詞: 鑭鉬氧電解質單氣室固態氧化物燃料電池梯度式陰極梯度式陽極甲烷燃料
外文關鍵詞: Lanthanum molybdate electrolyte, Single chamber, SOFC, Gradient cathode, Gradient anode, methane fuel
相關次數: 點閱:248下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 先前我們實驗室已證實鑭鏑鉬氧化物((La1.8Dy0.2)Mo2O9)作為固態氧化物燃料電池之電解質,此燃料電池目前可以可運用在中溫範圍單氣室條件下工作。本研究藉由梯度式陰、陽極調整其與電解質匹配性提升電池電功率密度表現。
    在提升功率表現的工作上,主要分為兩階段:第一階段以找出最佳化的電解質厚度、陽極孔洞率及陰極的結構與厚度,並以LDM為電解質, GDC(Ce0.9Gd0.1O1.95) + LDM +Ni為陽極,SSC(Sm0.5Sr0.5CoO3) + GDC為陰極。當電解質、陽極與陰極的組成固定時,以63 m電解質、25m梯度式SSC+GDC陰極與500 mm GDC+LDM+Ni(含10 wt.%石墨)陽極所製備之電池,於700 C下,進料氣體體積流量為350 sccm且比例為甲烷與氧氣1.5:1時,擁有電功率密度329.9 mW/cm2。
    第二階段在相同的量測條件下,著重於改善陽極部分,藉由梯度式陽極、添加陽極功能層(AFL)與添加Pd 觸媒。所有在此階段量測的電池其電解質厚度皆為632 m、梯度式陰極厚度皆為252 m,而雙層梯度式陽極將電池電功率密度提升至377.8 mW/cm2,而將電功率密度提升主要歸因於在外層陽極中添加20 wt.% 石墨增加孔洞率,以致降低濃度極化阻抗提升電功率密度表現。之後,為了增加陽極與電解質介面間的三相點數,因而添加一層粒徑較小之功能層,其所製備之電池電功率密度更進一步提升至388.1 mW/cm2。添加Pd觸媒部分,發現僅於外層陽極添加Pd觸媒比內層陽極添加效果較佳,且僅於外層陽極添加3 wt.%Pd時所製備之電池電功率密度達437.3 mW/cm2。


    The previous studies of this research group have demonstrated La1.8Dy0.2Mo2O9 (LDM) is a feasible electrolyte for solid oxide fuel cell (SOFC), operating under single chamber conditions in intermediate temperature range. In this work, we further uplift the power performance of this SOFC through upgrading its matching anode and cathode.
    The efforts are divided in two phases in improving the power performance. Phase I, we optimize the electrolyte thickness, the anode porosity, and the cathode microstructure and thickness, while LDM is the electrolyte, GDC(Ce0.9Gd0.1O1.95) + LDM + Ni is the anode, SSC(Sm0.5Sr0.5CoO3) + GDC is the cathode. When the compositions for electrolyte, anode, and cathode are fixed, the optimal single chamber power is read at 700 C, with 63 m thick LDM, 25 m thick gradient cathode of SSC + GDC, and 0.5 mm thick porous anode of GDC + LDM + Ni including 10 wt%graphite as pore former. The peak power value of the optimal cell measures 329.9 mW/cm2, in a 350 sccm flow of methane and air mixture with the CH4 : O2 ratio 1.5:1.
    In phase II, we focus on the anode improvement, including application of gradient anode, addition of anode functional layer (AFL), and addition of palladium catalyst, while fixing the single chamber operation conditions. All the test cells in phase II were prepared with an electrolyte of 632 m in thickness and a gradient cathode of 252 m in thickness. A two-layer anode uplifts the peak power value to 377.8 mW/cm2, and we attribute the improvement to the more porous (20wt% graphite) outer layer which reduces the concentration polarization. The cell performance is further enhanced to the power level of 388.1 mW/cm2, after adding a functional layer between anode and electrolyte to increase the triple-phase boundary. Addition of palladium catalyst in anode is found effective in the outer layer, not the inner layer. And 3 wt% Pd catalyst in outer anode lifts the peak power value to 437.3 mW/cm2.

    摘要 I ABSTRACT III 目錄 V 圖目錄 X 表目錄 XV 第一章 序論 1 1-1 前言 1 1-2研究動機 3 第二章 文獻回顧與理論基礎 4 2-1燃料電池簡介 4 2-2固態氧化物燃料電池基本原理 8 2-2-1 雙氣室固態氧化物燃料電池(DC-SOFC) 9 2-1-2 單氣室固態氧化物燃料電池(SC-SOFC) 11 2-3 固態氧化燃料電池陽極 13 2-3-1 氧化鋯鎳基陽極 14 2-3-2 氧化鈰鎳基陽極 15 2-3-3 鈣鈦礦結構陽極材料 16 2-3-4 La2Mo2O9系電解質的配合陽極 17 2-4 固態氧化物燃料電池的電解質 19 2-4-1 氧化鋯(Zr2O)基電解質 21 2-4-2 氧化鈰(CeO2)基電解質 23 2-4-3 鎵酸鑭 (LaGaO3)基電解質 24 2-4-4 氧化鉍(Bi2O3)基電解質 25 2-4-5 鑭鉬氧化物(La2Mo2O9)電解質 27 2-4-5-1 鑭鉬氧化物( La2Mo2O9 )其氧離子導機制 28 2-4-5-2 鑭鉬氧化物(La2Mo2O9)優缺點 29 2-5 固態氧化燃料電池陰極 32 2-6 電極改質 36 2-6-1 孔洞生成劑 37 2-6-2 功能層與梯度結構電極 38 2-6-3 陽極摻雜貴金屬 40 2-7 固態氧化物燃料電池之極化現象 41 2-7-1 歐姆極化 42 2-7-2 濃度極化 43 2-7-3 活化極化 44 2-8 粉體製備 45 第三章 實驗方法與步驟 48 3-1 實驗方法 48 3-2 實驗藥品 50 3-3 儀器設備 52 3-4 電池元件的製備 54 3-4-1 製備 (La1.8Dy0.2)Mo2O9 電解質粉末 54 3-4-2 製備NiO、 (Ce0.9Gd0.1)O1.95與 (Sm0.5Sr0.5)CoO3粉末 56 3-4-3 製備陽極基材 ( NiO – (Ce0.9Gd0.1)O1.95 – (La1.8Dy0.2)Mo2O9 - 孔洞生成劑 ) 60 3-4-4 調製電池元件用膠 62 3-4-5 製備陰極電極 63 3-4-6 製備電流收集器 64 3-5 燃料電池之特性鑑定與分析 64 3-5-1 SEM 表面影像分析 64 3-5-2交流阻抗分析 65 3-5-2 熱膨脹係數分析 65 3-6 燃料電池之測試 66 3-6-1 測試系統簡介 66 3-6-2 電池電流-電壓測試流程 67 第四章 結果與討論 68 4-1 XRD結構鑑定與分析 69 4-1-1 陰極晶體結構鑑定 69 4-1-2 陰極氫氣還原XRD分析 71 4-2 陽極添加孔洞生成劑 72 4-2-1 SEM分析 73 4-2-2電功率密度測試 75 4-3 不同厚度之電解質與陰極 77 4-3-1 不同厚度之電解質 77 4-3-1-1 SEM分析 77 4-3-1-2電功率密度測試 78 4-3-1-3 交流阻抗分析 80 4-3-2 不同厚度之陰極 82 4-3-2-1 SEM分析 82 4-3-2-2電功率密度測試 83 4-3-2-3交流阻抗分析 84 4-3-2-4 陰極熱膨脹係數匹配 86 4-4 梯度材料及功能層之陽極 89 4-4-1 梯度材料與孔洞率之陽極 91 4-4-1-1 SEM分析 91 4-4-1-2電功率密度測試 93 4-4-1-3交流阻抗分析 94 4-4-2 功能層之陽極 95 4-4-2-1 SEM分析 95 4-4-2-2電功率密度測試 96 4-4-2-3交流阻抗分析 96 4-5 陽極摻雜貴金屬 98 4-5-1 梯度式陽極摻雜 1 wt% Pd 98 4-5-1-1 電功率密度測試 98 4-5-1-2 交流阻抗分析 100 4-5-2 梯度式陽極摻雜不同含量 Pd 101 4-5-2-1 電功率密度測試 101 4-5-2-2 交流阻抗分析 103 第五章 結論 106 參考文獻 109 附錄A 115

    [1] S. P. S. Badwal and K. Foger, "Solid oxide electrolyte fuel cell review," Ceramics International, vol. 22, pp. 257-265, 1996.
    [2] Ph. Lacorre, et al., "Designing fast oxide-ion conductors based on La2Mo2O 9," Nature, vol. 404, pp. 856-858, 2000.
    [3] S. M. Haile, "Materials for fuel cells," Materials Today, vol. 6, pp. 24-29, 2003.
    [4] B. C. H. Steele and A. Heinzel, "Materials for fuel-cell technologies," Nature, vol. 414, pp. 345-352, 2001.
    [5] James. Larminie and A. Dicks, "Fuel Cell Systems Explained_Second Edition," 2003.
    [6] C. Zhang, et al., "Initialization of a methane-fueled single-chamber solid-oxide fuel cell with NiO+SDC anode and BSCF+SDC cathode," Journal of Power Sources, vol. 179, pp. 640-648, 2008.
    [7] J. Canales-Vázquez, et al., "Fe-substituted (La,Sr)TiO3 as potential electrodes for symmetrical fuel cells (SFCs)," Journal of Power Sources, vol. 171, pp. 552-557, 2007.
    [8] T. Suzuki, et al., "Performance of a Porous Electrolyte in Single-Chamber SOFCs," Journal of The Electrochemical Society, vol. 152, p. A527, 2005.
    [9] T. Suzuki, et al., "Anode Supported Single Chamber Solid Oxide Fuel Cell in
    CH4-Air Mixture," Journal of The Electrochemical Society, vol. 151, p. A1473, 2004.
    [10] T. Hibino, et al., "A Solid Oxide Fuel Cell Using an Exothermic Reaction as the Heat Source," Journal of The Electrochemical Society, vol. 148, p. A544, 2001.
    [11] M. Yano, et al., "Recent advances in single-chamber solid oxide fuel cells: A review," Solid State Ionics, vol. 177, pp. 3351-3359, 2007.
    [12] J. Ruizmorales, et al., "On the simultaneous use of La0.75Sr0.25Cr0.5Mn0.5O3−δ as both anode and cathode material with improved microstructure in solid oxide fuel cells," Electrochimica Acta, vol. 52, pp. 278-284, 2006.
    [13] R. Gorte, "Novel SOFC anodes for the direct electrochemical oxidation of hydrocarbons," Journal of Catalysis, vol. 216, pp. 477-486, 2003.
    [14] T. Hibino, et al., "Single-Chamber Solid Oxide Fuel Cells at Intermediate Temperatures with Various Hydrocarbon-Air Mixtures," Journal of The Electrochemical Society, vol. 147, pp. 2888-2892, 2000.
    [15] J. Ruizmorales, et al., "LSCM–(YSZ–CGO) composites as improved symmetrical electrodes for solid oxide fuel cells," Journal of the European Ceramic Society, vol. 27, pp. 4223-4227, 2007.
    [16] T. Hibino, et al., "One-chamber solid oxide fuel cell constructed from a YSZ electrolyte with a Ni anode and LSM cathode," Solid State Ionics, vol. 127, pp. 89-98, 2000.
    [17] J. S. Mohammed, "A study of high temperature reactions in oxide-dispersion-strengthened molybdenum at reduced oxygen partial pressures.," 2004.
    [18] T. I. Toshihiko SETOGUCHI, Hiromichi TAKEBE, Koichi EGUCHI, and K. M. a. H. APAI, "Fabrication and Evaluation of Flat Thick Film Type Solid Oxide Fuel Cells.," Solid State Ionics, vol. 37, pp. 217-221, 1990.
    [19] H. Kan and H. Lee, "Enhanced stability of Ni–Fe/GDC solid oxide fuel cell anodes for dry methane fuel," Catalysis Communications, vol. 12, pp. 36-39, 2010.
    [20] E. V. Tsipis and V. V. Kharton, "Electrode materials and reaction mechanisms in solid oxide fuel cells: a brief review," Journal of Solid State Electrochemistry, vol. 12, pp. 1367-1391, 2008.
    [21] C. Xia and M. Liu, "Microstructures, conductivities, and electrochemical properties of Ce0.9Gd0.1O2 and GDC-Ni anodes for low-temperature SOFCs," Solid State Ionics, vol. 152-153, pp. 423-430, 2002.
    [22] X. Lu and J. Zhu, "Cu(Pd)-impregnated La0.75Sr0.25Cr0.5Mn0.5O3−δ anodes for direct utilization of methane in SOFC," Solid State Ionics, vol. 178, pp. 1467-1475, 2007.
    [23] Z. Lu, et al., "A Co–Fe alloy as alternative anode for solid oxide fuel cell," Journal of Power Sources, vol. 180, pp. 172-175, 2008.
    [24] M. Asamoto, et al., "Improvement of Ni/SDC anode by alkaline earth metal oxide addition for direct methane–solid oxide fuel cells," Electrochemistry Communications, vol. 11, pp. 1508-1511, 2009.
    [25] T. Wei, et al., "Sr2NiMoO6−δ as anode material for LaGaO3-based solid oxide fuel cell," Electrochemistry Communications, vol. 10, pp. 1369-1372, 2008.
    [26] "Phase Diagrams for Ceramists, Vol III,," The American Ceramic Society, 1975.
    [27] S. Haile, "Fuel cell materials and components," Acta Materialia, vol. 51, pp. 5981-6000, 2003.
    [28] F. Tietz, et al., "Components manufacturing for solid oxide fuel cells," Solid State Ionics, vol. 152-153, pp. 373-381, 2002.
    [29] D. J. L. Brett, et al., "Intermediate temperature solid oxide fuel cells," Chemical Society Reviews, vol. 37, p. 1568, 2008.
    [30] J. Molenda, et al., "Functional materials for the IT-SOFC," Journal of Power Sources, vol. 173, pp. 657-670, 2007.
    [31] Y. Arachi, et al., "Electrical conductivity of the ZrO2-Ln2O3 (Ln=lanthanides) system," Solid State Ionics, vol. 121, pp. 133-139, 1999.
    [32] T. Matsui, et al., "Electrochemical properties of ceria-based oxides for use in intermediate-temperature SOFCs," Solid State Ionics, vol. 176, pp. 647-654, 2005.
    [33] Y. Leng, et al., "Low-temperature SOFC with thin film GDC electrolyte prepared in situ by solid-state reaction," Solid State Ionics, vol. 170, pp. 9-15, 2004.
    [34] M. Mogensen, et al., "Physical, chemical and electrochemical properties of pure and doped ceria," Solid State Ionics, vol. 129, pp. 63-94, 2000.
    [35] K. Huang, et al., "Characterization of Sr-Doped LaMnO3 and LaCoO3 as Cathode Materials for a Doped LaGaO3 Ceramic Fuel Cell," Journal of The Electrochemical Society, vol. 143, pp. 3630-3636, 1996.
    [36] D. Hirabayashi, et al., "Improvement of a reduction-resistant CeSmO electrolyte by optimizing a thin BaCeSmO layer for intermediate-temperature SOFCs," Solid State Ionics, vol. 176, pp. 881-887, 2005.
    [37] D. Xu, et al., "Fabrication and characterization of SDC–LSGM composite electrolytes material in IT-SOFCs," Journal of Alloys and Compounds, vol. 429, pp. 292-295, 2007.
    [38] M. Hrovat, et al., "Interactions between lanthanum gallate based solid electrolyte and ceria," Materials Research Bulletin, vol. 34, pp. 2027-2034.
    [39] W. Guo, et al., "Electrochemical evaluation of La0.6Sr0.4Co0.8Fe0.2O3−δ–La0.9Sr0.1Ga0.8Mg0.2O3−δ composite cathodes for La0.9Sr0.1Ga0.8Mg0.2O3−δ electrolyte SOFCs," Journal of Alloys and Compounds, vol. 473, pp. 43-47, 2009.
    [40] N. M. Sammes, et al., "Bismuth based oxide electrolytes-- structure and ionic conductivity," Journal of the European Ceramic Society, vol. 19, pp. 1801-1826, 1999.
    [41] G. Gattow and H. Schröder, "Über Wismutoxide. III. Die Kristallstruktur der Hochtemperaturmodifikation von Wismut(III)-oxid (δ-Bi2O3)," Zeitschrift für anorganische und allgemeine Chemie, vol. 318, pp. 176-189, 1962.
    [42] P. Shuk, et al., "Oxide ion conducting solid electrolytes based on Bi2O3," Solid State Ionics, vol. 89, pp. 179-196, 1996.
    [43] M. J. Verkerk and A. J. Burggraaf, "High Oxygen Ion Conduction in Sintered Oxides of the Bi 2O 3-Dy 2O3 System," Journal of The Electrochemical Society, vol. 128, pp. 75-82, 1981.
    [44] F. Goutenoire, et al., "Structural and transport characteristics of the LAMOX family of fast oxide-ion conductors, based on lanthanum molybdenum oxide LaMoO," Journal of Materials Chemistry, vol. 11, pp. 119-124, 2001.
    [45] D. Marrero-López, et al., "Phase stability and ionic conductivity in substituted La2W2O9," Journal of Solid State Chemistry, vol. 181, pp. 253-262, 2008.
    [46] D. Tsai, et al., "Ionic conductivities and phase transitions of lanthanide rare-earth substituted LaMoO," Journal of the European Ceramic Society, vol. 25, pp. 481-487, 2005.
    [47] T. Jin, et al., "Structural stability and ion conductivity of the Dy and W substituted La2Mo2O9," Solid State Ionics, vol. 178, pp. 367-374, 2007.
    [48] 羅仁捷, "甲烷固態氧化物燃料電池陽極陰極與鑭鉬氧電解質的匹配," 碩士, 化學工程系, 國立臺灣科技大學, 台北市, 2010.
    [49] J.-D. Kim, et al., "Characterization of LSM-YSZ composite electrode by ac impedance spectroscopy," Solid State Ionics, vol. 143, pp. 379-389, 2001.
    [50] L. W. Tai, et al., "Structure and electrical properties of La1-xSrxCo1-yFeyO3. Part 1. The system La0.8Sr0.2Co1-yFeyO3," Solid State Ionics, vol. 76, pp. 259-271, 1995.
    [51] P. Ried, et al., "Synthesis and Characterization of La 0.6Sr0.4Co 0.2Fe 0.8O 3−δ and Ba 0.5Sr 0.5Co0.8Fe 0.2O 3−δ," Journal of The Electrochemical Society, vol. 155, p. B1029, 2008.
    [52] Z. Liu, et al., "Preparation and characterization of graded cathode La0.6Sr0.4Co0.2Fe0.8O3−δ," Journal of Power Sources, vol. 173, pp. 837-841, 2007.
    [53] J. Hu, et al., "Effect of composite pore-former on the fabrication and performance of anode-supported membranes for SOFCs," Journal of Membrane Science, vol. 318, pp. 445-451, 2008.
    [54] J. J. Haslam, et al., "Effects of the Use of Pore Formers on Performance of an Anode Supported Solid Oxide Fuel Cell," Journal of the American Ceramic Society, vol. 88, pp. 513-518, 2005.
    [55] A. Sanson, "Influence of pore formers on slurry composition and microstructure of tape cast supporting anodes for SOFCs," Journal of the European Ceramic Society, vol. 28, pp. 1221-1226, 2008.
    [56] C. M. An, et al., "The effect of porosity gradient in a Nickel/Yttria Stabilized Zirconia anode for an anode-supported planar solid oxide fuel cell," Journal of Power Sources, vol. 195, pp. 821-824, 2010.
    [57] D. Marrero-López, et al., "Preparation of thin layer materials with macroporous microstructure for SOFC applications," Journal of Solid State Chemistry, vol. 181, pp. 685-692, 2008.
    [58] S. Jung, et al., "Influence of composition and Cu impregnation method on the performance of Cu/CeO2/YSZ SOFC anodes," Journal of Power Sources, vol. 154, pp. 42-50, 2006.
    [59] P. Holtappels, et al., "Preparation of Porosity–Graded SOFC Anode Substrates," Fuel Cells, vol. 6, pp. 113-116, 2006.
    [60] L. Zhang, et al., "NiO/YSZ, anode-supported, thin-electrolyte, solid oxide fuel cells fabricated by gel casting," Journal of Power Sources, vol. 170, pp. 55-60, 2007.
    [61] Y. Liu, "Nanostructured and functionally graded cathodes for intermediate temperature solid oxide fuel cells," Journal of Power Sources, vol. 138, pp. 194-198, 2004.
    [62] X. Xu, et al., "Fabrication and performance of functionally graded cathodes for IT-SOFCs based on doped ceria electrolytes," Solid State Ionics, vol. 176, pp. 1513-1520, 2005.
    [63] W. S. Xia, et al., "Functionally Graded Layers Prepared by Atmospheric Plasma Spraying for Solid Oxide Fuel Cells," Advanced Engineering Materials, vol. 11, pp. 111-116, 2009.
    [64] P. Holtappels and C. Bagger, "Fabrication and performance of advanced multi-layer SOFC cathodes," Journal of the European Ceramic Society, vol. 22, pp. 41-48, 2002.
    [65] C. Jin, et al., "Electrochemical characteristics of an La0.6Sr0.4Co0.2Fe0.8O3–La0.8Sr0.2MnO3 multi-layer composite cathode for intermediate-temperature solid oxide fuel cells," Journal of Power Sources, vol. 183, pp. 506-511, 2008.
    [66] M. A. Sukeshini, et al., "Ink-Jet Printing: A Versatile Method for Multilayer Solid Oxide Fuel Cells Fabrication," Journal of the American Ceramic Society, vol. 92, pp. 2913-2919, 2009.
    [67] K. Chen, et al., "Performance of an anode-supported SOFC with anode functional layers," Electrochimica Acta, vol. 53, pp. 7825-7830, 2008.
    [68] H. Moon, et al., "Characteristics of SOFC single cells with anode active layer via tape casting and co-firing," International Journal of Hydrogen Energy, vol. 33, pp. 2826-2833, 2008.
    [69] T. Hibino, et al., "High Performance Anodes for SOFCs Operating in Methane-Air Mixture at Reduced Temperatures," Journal of The Electrochemical Society, vol. 149, p. A133, 2002.
    [70] B. B. Patil and S. H. Pawar, "Synthesis and characterization of spray deposited PdO–NiO–SDC composite anode material for potential application in IT-SOFC," Journal of Alloys and Compounds, vol. 509, pp. 3644-3650, 2011.
    [71] T. Takeguchi, "Effect of precious metal addition to Ni-YSZ cermet on reforming of CH4 and electrochemical activity as SOFC anode," Catalysis Today, vol. 84, pp. 217-222, 2003.
    [72] V. A. Sadykov, et al., "Design of Anode Materials for IT SOFC: Effect of Complex Oxide Promoters and Pt Group Metals on Activity and Stability in Methane Steam Reforming of Ni/YSZ (ScSZ) Cermets," Journal of Fuel Cell Science and Technology, vol. 7, p. 011005, 2010.
    [73] Y. Nabae and I. Yamanaka, "Alloying effects of Pd and Ni on the catalysis of the oxidation of dry CH4 in solid oxide fuel cells," Applied Catalysis A: General, vol. 369, pp. 119-124, 2009.
    [74] S. McIntosh, et al., "Effect of Precious-Metal Dopants on SOFC Anodes for Direct Utilization of Hydrocarbons," Electrochemical and Solid-State Letters, vol. 6, p. A240, 2003.
    [75] S. Jiang, et al., "Nanostructured palladium–La0.75Sr0.25Cr0.5Mn0.5O3/Y2O3–ZrO2 composite anodes for direct methane and ethanol solid oxide fuel cells," Journal of Power Sources, vol. 185, pp. 179-182, 2008.
    [76] Z. F. Zhou, et al., "Direct oxidation of waste vegetable oil in solid-oxide fuel cells," Journal of Power Sources, vol. 171, pp. 856-860, 2007.
    [77] "Fuel Cell Handbook (Seventh Edition)," 2004.
    [78] J.-W. Kim, et al., "Polarization Effects in Intermediate Temperature, Anode-Supported Solid Oxide Fuel Cells," Journal of The Electrochemical Society, vol. 146, pp. 69-78, 1999.
    [79] G. W. S. C. Jeffrey Brinker, "Sol-gel science: the physics and chemistry of sol-gel processing," pp. 2-10, 1990.
    [80] C. Ding, et al., "Effect of thickness of Gd0.1Ce0.9O1.95 electrolyte films on electrical performance of anode-supported solid oxide fuel cells," Journal of Power Sources, vol. 195, pp. 5487-5492, 2010.

    無法下載圖示 全文公開日期 2016/07/12 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE