簡易檢索 / 詳目顯示

研究生: 詹勝凱
Sheng-Kai Chan
論文名稱: 五元鐵-20鎳-15錳-3.7鋁-0.6碳合金鋼的相變化研究
The study of phase transformations in a quinary Fe-20 Ni-15 Mn-3.7 Al-0.6 C(wt.%) alloy
指導教授: 鄭偉鈞
Wei-Chun Cheng
口試委員: 丘群
Qun Qiu
林熾燦
Chi-Can Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 84
中文關鍵詞: 鐵鎳錳鋁鋼spinodal相分離有序化反應B2
外文關鍵詞: Fe-Ni-Mn-Al alloy, spinodal decomposition, ordering reaction, B2
相關次數: 點閱:160下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本團隊研究鐵錳鋁合金相變化多年,為進一步探討鎳添加於鐵錳鋁合金中所造成的相變化差異,本論文針對成份為鐵-20鎳-15錳-3.7鋁-0.6碳(wt.%)合金之相變化進行研究。熱處理分為前處理的1100℃高溫固溶處理,以及經固溶處理後再於600℃至1000℃的溫度區間進行恆溫處理。此合金鋼經固溶處理後為FCC沃斯田體相(γ)與析出少量BCC+B2共存相,為三相組織;於1000℃至800℃溫度區間,於沃斯田體晶界與基地內同時發生析出型相變化,析出相為BCC相(α);於700℃至600℃溫度區間,在沃斯田體晶界與基地中析出BCC相、M23C6與M3C碳化物。其中於恆溫處理析出的BCC相經TEM分析確認為BCC與B2兩相共存晶粒, BCC奈米晶粒分布於B2基地內。其成因是因於恆溫處理時γ基地先析出BCC相晶粒,並於水淬降溫過程BCC相晶粒發生自發性相分離而形成貧鎳鋁BCC相(α')與富鎳鋁BCC相(α''),其反應式如下:α  α' + α'';其中富鎳鋁α''相再於冷卻過程經序化反應,相變化成B2相,其反應式如下:α''  B2;因此,析出α相於降溫冷卻過程的序列反應式如下:α  α' + α''  α' + B2。


Our research teams has been studying the Fe-Mn-Al alloys for many years. In order to further explore the difference in phase changes caused by the addition of Ni to Fe-Mn-Al alloys, this paper will focus on the composition of Fe-20Ni-15Mn-3.7Al-0.6C (wt.%) alloy steel after different heat treatments was analyzed and studied. The heat treatment is divided into solution treatment in which the temperature is kept at 1100°C for 1 hour and then quenched to room temperature, and solution treatment is followed by low temperature constant temperature treatment in the temperature range of 600°C to 1000°C. It is confirmed by this experiment that this alloy steel is a triple-phase with FCC(γ) and (BCC + B2) in Matrix after solution treatment; After heattreatment the precipitated phase is BCC (α) in the grain boundary and matrix at the temperature range of 1000°C to 800°C; At temperature range of 700°C to 600°C, BCC (α), M23C6 carbide and M3C carbide are precipitated in the grain boundaries and matrix. Among them, the BCC precipitated at low temperature and constant temperature treatment was confirmed to be BCC and B2 two-phase coexistence crystal grains by TEM analysis. The BCC (α) are precipitated at the γ matrix during low temperature and constant temperature treatment above 500°C, and undergo spontaneous phase separation (spinodal decomposition) during the water quenching process to the BCC phase (α') transformed into solute-lean BCC phase (α') and solute-enriched BCC phase (α''). The reaction can be written as following: α=α' + α".At cooling procese, disordered supersaturated solution transformed to ordered B2 phase after ordering reaction. The reaction can be written as follows: α"= B2. The overall reactions can be written as follows:α=α' +α"=α' + B2.

摘 要 I 英文摘要 II 謝 誌 III 目 錄 IV 表目錄 V 圖目錄 VI 第一章 前 言 1 第二章 文獻回顧 3  2.1擴散型相變化 3 第三章 實驗方法 14  3.1 鐵鎳錳鋁合金鋼熔鑄與加工 14  3.2 熱處理 15  3.3 儀器說明與試片製作 17 第四章 結果與討論 30  4.1 經1100℃固溶處理的組成相 30  4.2 600℃至1000℃的組成相 31  4.3 高溫BCC相經由spinodal相分離與序化反應生成(BCC + B2)的組成晶粒 40 第五章 結 論 80 參考文獻 82

[1] P. R. S. Jackson, High temperature oxidation of iron-manganese-aluminum based alloys, Oxidation of metals, 21 (1984), 135.
[2] K. H. Hwang, Phase transformation in a duplex Fe-Mn-Al-C alloy, Materials Science and Engineering, A 132 (1991), 161.
[3] W. C. Cheng, Observing the massive transformation in an Fe–Mn–Al alloy, Materials Science and Engineering, A 335(1-2) (2002), 82.
[4] C. J. Wang, NaCl-induced hot corrosion of Fe–Mn–Al–C alloys, Materials Chemistry and Physics, 76(2) (2002), 151.
[5] S. K. Chen, The bcc to fcc transformation in Fe-Mn-Al-C alloys, Scripta metallurgica, 23(11) (1989), 1919.
[6] D. A. Porter, Phase Transformations in Metals and Alloys, 3th ed, Nelson Thornes (2008).
[7] G. L. Kayak, Fe-Mn-Al precipitation-hardening austenitic alloys, Metal Science and Heat Treatment, 11(2) (1969), 95.
[8] J. H. Jaw, The formation of AIN crystals in an Fe-Mn-Al-C alloy during the nitriding process, Metallurgical and Materials Transactions A, 36 (2005), 2289.
[9] W. C. Cheng, Observing massive phase transformation in a Fe–Mn–Al alloy. Scripta materialia, 55(9) (2006), 783.
[10] W. B. Lee, Transmission electron microscopy studies of the crystallography of BCC/18R martensite in Fe-Mn-Al-C, Acta metallurgica et materialia, 43(1) (1995), 21.
[11] H. Y. Chu, Structural evolution of the aging of martensite in duplex Fe-Mn-Al-C alloy. Scripta metallurgica et materialia, 33(8) (1995).
[12] W. C. Cheng, The role carbon plays in the martensitic phase transformation of an Fe–Mn–Al alloy. Scripta materialia, 48(3) (2003), 295.
[13] K. Sato, Spinodal decomposition and mechanical properties of an austenitic Fe-30 wt.% Mn-9 wt.% Al-0.9 wt.% C alloy, Materials Science and Engineering A,111 (1989), 45.
[14] K. Sato, Modulated structure and magnetic properties of age-hardenable Fe-Mn-Al-C alloys, Metallurgical Transactions A, 21 (1990), 5.
[15] K. H. Han, On the coarsening of the modulated structure during aging of austenitic Fe-Mn-Al-C alloys prepared by the rapid solidification process. Materials Science and Engineering A, 197(2) (1995), 223.
[16] W. K. Choo, Microstructural change in austenitic Fe-30.0 wt% Mn-7.8 wt% Al-1.3 wt% C initiated by spinodal decomposition and its influence on mechanical properties, Acta Materialia, 45(12) (1997), 4877.
[17] C. S. Wang, Phase transitions in an Fe–9Al–30Mn–2.0 C alloy. Scripta Materialia, 57(9) (2007), 809.
[18] W.C. Cheng, The precipitation of FCC phase from BCC matrix in an Fe–Mn–Al alloy, Mat. Sci. Eng. A (2002), 323.
[19] W. C. Cheng, Observing the D03 phase in Fe–Mn–Al alloys, Materials Science and Engineering A, 337(1-2) (2002), 281.
[20] W. C. Cheng, The formation of ferrite quenching twins in a body-centered cubic Fe–Mn–Al alloy during high-temperature quenching, Scripta Materialia, 81 (2014), 36.
[21] W. C. Cheng, Formation of a new phase after high-temperature annealing and air cooling of an Fe-Mn-Al alloy, Metallurgical and Materials Transactions A, 36(7) (2005), 1737.
[22] W. C. Cheng, A study of aluminum nitride in a Fe–Mn–Al–C alloy, Scripta materialia, 51(4) (2004), 279.
[23] J. A. Hanna, A new high-strength spinodal alloy, Journal of materials research, 20(4) (2005), 791.
[24] 黃子謙,Fe-20 Ni-15 Mn-4.5 Al合金鋼的相變化研究,國立台灣科技大學,碩士論文 (2021)。
[25] W. C. Cheng, Phase transformation of the L12 phase to kappa-carbide after spinodal decomposition and ordering in an Fe–C–Mn–Al austenitic steel, Materials Science and Engineering, 642(26) (2015),128.
[26] 鄭偉鈞,錳鋁鋼中M23C6波來體組織的存在的成份範圍研究,行政院國家科學委員會專題研究成果報告(2013),編號: NSC101-2221-E011-044。
[27] W. F. Smith, Structure and properties of engineering alloys, McGraw-Hill Book Co. , illustrated,16(95) (1981).
[28] G. Spanos, Morphology, crystallography and mechanism of sympathetic nucleation of proeutectoid cementite plates, Scripta Metall, 22 (1988), 1537.
[29] D.H. Huang, Metallography of bainitic transformation in silicon containing steels, Met. Trans. , 8A (1977), 1661.
[30] Y.A. Bagaryatskii, The probable mechanism of the martensite decomposition, Dokl Akad Nauk SSSR, 73 (1950), 1161.

無法下載圖示 全文公開日期 2026/02/10 (校內網路)
全文公開日期 2028/02/10 (校外網路)
全文公開日期 2028/02/10 (國家圖書館:臺灣博碩士論文系統)
QR CODE