簡易檢索 / 詳目顯示

研究生: 陳佳勇
Jia-Yong Chen
論文名稱: 熱處理改質SK85高碳熱軋鋼電極於電-芬頓系統之性能研究
Application of SK85 High Carbon Steel Electrode Modified with Heat Treatment in Electro-Fenton System
指導教授: 王朝正
Chaur-Jeng Wang
王宜達
Yi-Ta Wang
口試委員: 王朝正
Chaur-Jeng Wang
王宜達
Yi-Ta Wang
高振宇
Chen-Yu Kao
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 77
中文關鍵詞: 電-芬頓系統SK85空冷爐冷水淬回火
外文關鍵詞: Electro-Fenton, SK85, Air cooling, Furnace cooling, Water quenching, Tempering
相關次數: 點閱:255下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

電-芬頓系統(Electro-Fenton)具針對環境汙染物進行降解之功能,陰極電極材料性質為影響系統降解速率參數之一,可藉由表面改質或表面處理技術進行電極特性優化。本研究擇取SK85高碳鋼為電-芬頓系統陰極電極,分別進行空冷處理、爐冷處理、水淬處理、水淬後200 ℃回火處理及水淬後600 ℃回火處理,探討不同微觀組織之電極對系統之效益與影響,期望可藉此熱處理提升電-芬頓系統之運行速率。
結果顯示,熱處理後愈安定整齊之晶格結構可獲得最大之導電度,因此水淬後600 ℃回火處理之SK85電極,具備最低片電阻值6.22 ×103 Ω/sq、最大響應電流密度1.69 mA/cm2及電荷捕獲量2.72 C/cm2。於電-芬頓系統運行方面,使用經水淬後600 ℃回火處理SK85電極,可使系統產生最大反應常數2.32 × 10-2 min-1。相對地,水淬後高能量之麻田散體扭曲晶格則有最大之電阻與最差的染料降解率。熱處理程序,可以改變電-芬頓系統之運行速率。

關鍵字:電-芬頓系統、SK85、空冷、爐冷、水淬、回火。


Abstract
The Electro-Fenton system poessesses the function of degrading the environmental pollutants, cathode properties is one of the parameter that affect the degradation rate of the system, which can be optimized by surface modification or surface treatment. In this study, SK85 was selected as the cathode electrode in the electro-Fenton system, and it were treated by air cooling, furnace cooling, water quenching, 200 ℃ tempering, and 600 ℃ tempering treatment, which explores the benefits and effects of electrodes for different metallographic structures, and it hopes that this will increase the efficiency of the electro-Fenton system.
The results show that after heat treatment, the more stable lattice structure can obtain the maximum conductivity; therefore, SK85 electrode tempered at 600 ℃ has the lowest sheet resistance value of 6.22 ×103 Ω/sq, and the maximum response current density 1.69 mA/cm2 and charge trapping 2.72 C/cm2. For the effciciency of the electro-Fenton system, the SK85 electrode tempered at 600 ℃ after water quenching has a maximum system reaction constant of 2.32 ×10-2 min-1. In contrast, after water quenching, the distorted lattice of martensite with high-energy exhibits the largest electrical resistance and the worst dye degradation rate. The heat treatment process can change the efficiency of the electro-Fenton system.

Keywords: Electro-Fenton, SK85, Air cooling, Furnace cooling, Water quenching, Tempering.

目錄 摘要 I Abstract II 致謝 III 目錄 V 圖目錄 VIII 表目錄 X 第一章 前言 1 第二章 文獻回顧 3 2.1 高級氧化程序(Advanced Oxidation Processes, AOPs) 3 2.1.1 芬頓法(Fenton) 3 2.1.2 電-芬頓系統 (Electro-Fenton) 5 2.2 電-芬頓系統影響因素 7 2.3電極材料之選用 9 2.4 鋼鐵熱處理 12 2.4.1 相平衡圖 12 2.4.2 非平衡冷卻熱處理 14 第三章 實驗方法與步驟 17 3.1 實驗流程圖 17 3.2 實驗使用材料與儀器 18 3.2.1 實驗使用材料 18 3.2.2 實驗儀器設備 19 3.3 電極製備 21 3.3.1 SK85電極成分鑑定 21 3.3.2 SK85熱處理 22 3.4 電極材料微觀組織分析 26 3.4.1 金相試片製作 26 3.4.2 金相顯微鏡觀察組織 27 3.5 電極材料硬度量測 28 3.6 電化學特性量測 29 3.7 電-芬頓系統場域性能量測 30 第四章 結果與討論 33 4.1 不同熱處理後之電極材料微觀組織與機械性質 33 4.1.1 金相顯微組織觀察 33 4.2.1 各式熱處理後之電極材料硬度 40 4.2 SK85電極操作電位測試 42 4.2.1 SK85電極操作電位區間測定 42 4.2.2 SK85電極操作電位確認 43 4.3 電極微觀組織之電化學特性 45 4.3.1不同熱處理SK85電極之電阻率 45 4.3.2不同熱處理SK85電極之電化學特性 47 4.3.3 不同熱處理SK85電極抗腐蝕性能評估 50 4.4 不同熱處理SK85電-芬頓系統降解效率測試 53 第五章 結論 57 參考文獻 59 圖目錄 圖2-1 芬頓試劑降解汙染物反應機制。 4 圖2-2 電-芬頓法之反應機制圖。 6 圖2-3 鐵-碳平衡相圖。 13 圖2-4 鋼鐵平衡相圖及其典型微觀組織。 13 圖2-5 不同碳含量及微觀組織之鋼鐵材料硬度變化曲線。 16 圖3-1 實驗流程圖。 18 圖3-2 Spark OES金屬分析分光儀。 21 圖3-3 箱型空氣爐。 22 圖3-4 SK85空冷處理之溫度曲線圖(AC)。 23 圖3-5 SK85爐冷處理之溫度曲線圖(FC)。 24 圖3-6 SK85水淬處理之溫度曲線圖(WQ)。 24 圖3-7 SK85水淬後200 ℃回火處理之溫度曲線圖(QT200)。 25 圖3-8 SK85水淬後600 ℃回火處理之溫度曲線圖(QT600)。 25 圖3-9 試片冷鑲埋處理。 26 圖3-10 金相顯微鏡。 27 圖3-11 手動磨床設備。 28 圖3-12 (a) 維克氏硬度計;(b) 洛氏硬度計。 29 圖3-13 電-芬頓系統之場域示意圖。 31 圖4-1 SK85經空冷處理之微觀組織圖。 34 圖4-2 SK85經爐冷處理之微觀組織圖。 34 圖4-3 SK85經水淬處理之微觀組織圖。 35 圖4-4 SK85經水淬後200 ℃回火處理之微觀組織圖。 35 圖4-5 SK85經水淬後600 ℃回火處理之微觀組織圖。 36 圖4-6 SK85經空冷處理之截面影像圖。 37 圖4-7 SK85經爐冷處理之截面影像圖。 37 圖4-8 SK85經水淬處理之截面影像圖。 38 圖4-9 SK85經水淬後200 ℃回火處理之截面影像圖。 38 圖4-10 SK85經水淬後600 ℃回火處理之截面影像圖。 39 圖4-11 SK85電極之線性掃描伏安圖。 42 圖4-12 SK85電極以不同操作電位於電-芬頓系統之Rh B降解曲線。 44 圖4-13 SK85電極以不同操作電位於電-芬頓系統之Rh B降解率。 44 圖4-14 不同熱處理SK85電極之線性掃描伏安曲線。 47 圖4-15 不同熱處理SK85電極之循環伏安曲線。 49 圖4-16 不同熱處理SK85電極之鐵弗曲線。 52 圖4-17 不同熱處理SK85電極於電-芬頓系統之Rh B降解曲線。 53 圖4-18 不同熱處理SK85電極降解Rh B之一階動力學反應曲線。 56  表目錄 表3-1 日本JIS標準牌號SK85鋼成分規範與實測值(wt. %)。 21 表4-1 SK85電極經各式熱處理之表面脫碳層深度。 39 表4-2 SK85電極經各式熱處理後以維克氏硬度計再轉為HRC之硬度。 41 表4-3 以洛氏硬度計量測SK85電極熱處理後之硬度。 41 表4-4 不同熱處理SK85電極之片電阻值。 46 表4-5不同熱處理SK85電極之響應電流密度及電荷捕獲量。 50 表4-6 不同熱處理SK85電極之腐蝕電位及腐蝕電流密度值。 52 表4-7 不同熱處理SK85電極於電-芬頓系統之Rh B染料降解率。 54 表4-8 不同熱處理SK85電極之一階動力學反應常數與判定係數值。 56

參考文獻
[1] X. Li and J. Yu, "Water splitting by photocatalytic reduction," Heterogeneous Photocatalysis: Springer, pp. 175-210, 2016.
[2] C. Sun, T. Chen, Q. Huang, X. Duan, M. Zhan, L. Ji, X. Li, S. Wang, and J. Yan, "Biochar cathode: Reinforcing electro-Fenton pathway against four-electron reduction by controlled carbonization and surface chemistry," Science of The Total Environment, Vol. 754, p. 142136, 2021.
[3] X. Zhu and J. Ni, "Simultaneous processes of electricity generation and p-nitrophenol degradation in a microbial fuel cell," Electrochemistry Communications, Vol. 11, No. 2, pp. 274-277, 2009.
[4] P. V. Nidheesh and R. Gandhimathi, "Trends in electro-Fenton process for water and wastewater treatment: An overview," Desalination, Vol. 299, pp. 1-15, 2012.
[5] F. C. Moreira, R. A. R. Boaventura, E. Brillas, and V. J. P. Vilar, "Electrochemical advanced oxidation processes: A review on their application to synthetic and real wastewaters," Applied Catalysis B: Environmental, Vol. 202, pp. 217-261, 2017.
[6] 張偉哲,"應用熱處理SPHC低碳熱軋鋼製備燃料電池電極之特性探討",國立宜蘭大學機械與機電工程學系碩士論文,民國108年。
[7] D. Kanakaraju, B. D. Glass, and M. Oelgemöller, "Advanced oxidation process-mediated removal of pharmaceuticals from water: A review," Journal of Environmental Management, Vol. 219, pp. 189-207, 2018.
[8] A. Babuponnusami and K. Muthukumar, "A review on Fenton and improvements to the Fenton process for wastewater treatment," Journal of Environmental Chemical Engineering, Vol. 2, No. 1, pp. 557-572, 2014.
[9] A. Kraft, M. Stadelmann, and M. Blaschke, "Anodic oxidation with doped diamond electrodes: a new advanced oxidation process," Journal of Hazardous Materials, Vol. 103, No. 3, pp. 247-261, 2003.
[10] H. J. H. Fenton, "LXXIII.—Oxidation of tartaric acid in presence of iron," Journal of the Chemical Society, Transactions, Vol. 65, pp. 899-910, 1894.
[11] C. Walling, "Intermediates in the reactions of Fenton type reagents," Accounts of Chemical Research, Vol. 31, No. 4, pp. 155-157, 1998.
[12] M. h. Zhang, H. Dong, L. Zhao, D. x. Wang, and D. Meng, "A review on Fenton process for organic wastewater treatment based on optimization perspective," Science of The Total Environment, Vol. 670, pp. 110-121, 2019.
[13] N. Wang, T. Zheng, G. Zhang, and P. Wang, "A review on Fenton-like processes for organic wastewater treatment," Journal of Environmental Chemical Engineering, Vol. 4, No. 1, pp. 762-787, 2016.
[14] Y. Nie, C. Hu, J. Qu, and X. Hu, "Efficient photodegradation of Acid Red B by immobilized ferrocene in the presence of UVA and H2O2," Journal of Hazardous Materials, Vol. 154, No. 1, pp. 146-152, 2008.
[15] J. M. P. Ramos, N. M. Pereira-Queiroz, D. H. S. Santos, J. R. Nascimento, C. M. d. Carvalho, J. Tonholo, and C. L. P. S. Zanta, "Printing ink effluent remediation: A comparison between electrochemical and Fenton treatments," Journal of Water Process Engineering, Vol. 31, p. 100803, 2019.
[16] C. Zuo, L. Li, W. Chen, and Z. Zhang, "Synergistic effect on the four-electron ORR of the electro-Fenton system to remove micropollutants using an MOF-derived catalyst with carbon black," Applied Surface Science, Vol. 554, p. 149546, 2021.
[17] I. Sires, J. A. Garrido, R. M. Rodriguez, E. Brillas, N. Oturan, and M. A. Oturan, "Catalytic behavior of the Fe3+/Fe2+ system in the electro-Fenton degradation of the antimicrobial chlorophene," Applied Catalysis B: Environmental, Vol. 72, No. 3-4, pp. 382-394, 2007.
[18] K. Zhao, X. Quan, S. Chen, H. Yu, Y. Zhang, and H. Zhao, "Enhanced electro-Fenton performance by fluorine-doped porous carbon for removal of organic pollutants in wastewater," Chemical Engineering Journal, Vol. 354, pp. 606-615, 2018.
[19] D. Gümüş and F. Akbal, "Comparison of Fenton and electro-Fenton processes for oxidation of phenol," Process Safety and Environmental Protection, Vol. 103, pp. 252-258, 2016.
[20] Q. Wang and A. T. Lemley, "Kinetic model and optimization of 2, 4-D degradation by anodic Fenton treatment," Environmental science & technology, Vol. 35, No. 22, pp. 4509-4514, 2001.
[21] S. O. Ganiyu, T. X. H. Le, M. Bechelany, G. Esposito, E. D. van Hullebusch, M. A. Oturan, and M. Cretin, "A hierarchical CoFe-layered double hydroxide modified carbon-felt cathode for heterogeneous electro-Fenton process," Journal of Materials Chemistry A, Vol. 5, No. 7, pp. 3655-3666, 2017.
[22] W. Chu, "Modeling the quantum yields of herbicide 2,4-D decay in UV/H2O2 process," Chemosphere, Vol. 44, No. 5, pp. 935-941, 2001.
[23] M. Zhou, Q. Yu, L. Lei, and G. Barton, "Electro-Fenton method for the removal of methyl red in an efficient electrochemical system," Separation and Purification Technology, Vol. 57, No. 2, pp. 380-387, 2007.
[24] C. T. Wang, W. L. Chou, M. H. Chung, and Y. M. Kuo, "COD removal from real dyeing wastewater by electro-Fenton technology using an activated carbon fiber cathode," Desalination, Vol. 253, No. 1, pp. 129-134, 2010.
[25] M. Panizza and G. Cerisola, "Removal of organic pollutants from industrial wastewater by electrogenerated Fenton's reagent," Water Research, Vol. 35, No. 16, pp. 3987-3992, 2001.
[26] H. Zhang, C. Fei, D. Zhang, and F. Tang, "Degradation of 4-nitrophenol in aqueous medium by electro-Fenton method," Journal of Hazardous Materials, Vol. 145, No. 1, pp. 227-232, 2007.
[27] E. Mousset, Z. Wang, J. Hammaker, and O. Lefebvre, "Physico-chemical properties of pristine graphene and its performance as electrode material for electro-Fenton treatment of wastewater," Electrochimica Acta, Vol. 214, pp. 217-230, 2016.
[28] M. Panizza and G. Cerisola, "Direct and mediated anodic oxidation of organic pollutants," Chemical reviews, Vol. 109, No. 12, pp. 6541-6569, 2009.
[29] E. Rosales, M. Pazos, M. A. Longo, and M. A. Sanromán, "Electro-Fenton decoloration of dyes in a continuous reactor: A promising technology in colored wastewater treatment," Chemical Engineering Journal, Vol. 155, No. 1, pp. 62-67, 2009.
[30] Y. Sun, J. Li, T. Huang, and X. Guan, "The influences of iron characteristics, operating conditions and solution chemistry on contaminants removal by zero-valent iron: A review," Water Research, Vol. 100, pp. 277-295, 2016.
[31] H. C. Yatmaz and Y. Uzman, "Degradation of pesticide monochrotophos from aqueous solutions by electrochemical methods," International Journal of Electrochemical Science, Vol. 4, No. 5, pp. 614-626, 2009.
[32] M. Malakootian and A. Moridi, "Efficiency of electro-Fenton process in removing Acid Red 18 dye from aqueous solutions," Process Safety and Environmental Protection, Vol. 111, pp. 138-147, 2017.
[33] Y. Tian, M. Zhou, Y. Pan, X. Du, and Q. Wang, "MoS2 as highly efficient co-catalyst enhancing the performance of Fe0 based electro-Fenton process in degradation of sulfamethazine: Approach and mechanism," Chemical Engineering Journal, Vol. 403, p. 126361, 2021.
[34] S. Rezgui, A. Amrane, F. Fourcade, A. Assadi, L. Monser, and N. Adhoum, "Electro-Fenton catalyzed with magnetic chitosan beads for the removal of Chlordimeform insecticide," Applied Catalysis B: Environmental, Vol. 226, pp. 346-359, 2018.
[35] 吳俊諭,"AISI 304L, SPHC, 紅銅經熱浸鍍鋅與正常化熱處理應用於生物-電-芬頓系統陽極極板之特性研究",國立宜蘭大學機械與機電工程學系碩士論文,民國105年。
[36] 黃振賢,"金屬熱處理",新文京開發出版,台北市台灣,民國87年。
[37] R. A. Higgins and R. a Higgins, "Engineering metallurgy", Hodder and Stoughton, 1983.
[38] J. A. Pero-Sanz Elorz, D. Fernández González, and L. F. Verdeja, "Fe–C System. Stable and Metastable Equilibrium Diagrams," Physical Metallurgy of Cast IronsCham: Springer International Publishing, pp. 1-18, 2018.
[39] R. E. Reed-Hill and R. Abbaschian, "Physical metallurgy principles", 3 rd Ed, Chap.19. PWS-KENT Publishing Company, 1991.
[40] L. E. Samuels, "Light microscopy of carbon steels", ASM International, 1999.
[41] G. Krauss, "Principles of heat treatment of steel", American Society for Metals, 1980.
[42] Japanese Industrial Standards, JIS G4401-2009, "Carbon tool steel", 2009.
[43] G. Badea, A. Caraban, M. Sebesan, S. Dzitac, P. Cret, and A. Setel, "Polarisation measurements used for corrosion rates determination," Journal of sustenable energy, Vol. 1, No. 1, pp. 1-4, 2010.
[44] H. Chandler, "Heat Treater’s Guide: Practices and Procedures for Irons and Steels", ASM International, 1994.
[45] E. Brillas, I. Sirés, and M. A. Oturan, "Electro-Fenton Process and Related Electrochemical Technologies Based on Fenton’s Reaction Chemistry," Chemical Reviews, Vol. 109, No. 12, pp. 6570-6631, 2009.
[46] K. S. Yang, G. Mul, and J. A. Moulijn, "Electrochemical generation of hydrogen peroxide using surface area-enhanced Ti-mesh electrodes," Electrochimica Acta, Vol. 52, No. 22, pp. 6304-6309, 2007.
[47] R. Babaei-Sati and J. Basiri Parsa, "Electrogeneration of H2O2 using graphite cathode modified with electrochemically synthesized polypyrrole/MWCNT nanocomposite for electro-Fenton process," Journal of Industrial and Engineering Chemistry, Vol. 52, pp. 270-276, 2017.
[48] F. Yu, M. Zhou, L. Zhou, and R. Peng, "A novel electro-Fenton process with H2O2 generation in a rotating disk reactor for organic pollutant degradation," Environmental Science & Technology Letters, Vol. 1, No. 7, pp. 320-324, 2014.
[49] F. Khodabakhshi and M. Kazeminezhad, "The effect of constrained groove pressing on grain size, dislocation density and electrical resistivity of low carbon steel," Materials & Design, Vol. 32, No. 6, pp. 3280-3286, 2011.
[50] M. Q. Agurto, E. M. Atencio, F. AmÃ, and J. M. Ramos, "Metallographic analysis and electrical resistivity of the 1045 steel after being heat-treated," Journal of Metals, Materials and Minerals, Vol. 27, No. 1, pp. 53-58, 2017.
[51] Z. Ai, T. Mei, J. Liu, J. Li, F. Jia, L. Zhang, and J. Qiu, "Fe@ Fe2O3 core− shell nanowires as an iron reagent. 3. Their combination with CNTs as an effective oxygen-fed gas diffusion electrode in a neutral electro-Fenton system," The Journal of Physical Chemistry C, Vol. 111, No. 40, pp. 14799-14803, 2007.
[52] Y. T. Wang and Y. K. Wang, "Investigation of the lamination of electrospun graphene-poly (vinyl alcohol) composite onto an electrode of bio-electro-fenton microbial fuel cell," Nanomaterials and Nanotechnology, Vol. 7, p. 1847980417727427, 2017.
[53] M. Sarvghad, D. Del Aguila, and G. Will, "Optimized corrosion performance of a carbon steel in dilute sulfuric acid through heat treatment," Applied Surface Science, Vol. 491, pp. 460-468, 2019.
[54] S. Gollapudi, "Grain size distribution effects on the corrosion behaviour of materials," Corrosion Science, Vol. 62, pp. 90-94, 2012.
[55] I. Sudhakar, Y. Vishnu Vardhan, P. Sruthi, P. V. S. Harshit, S. Santosh Kumar, and V. Vijay Prakash, "Study on Corrosion Behavior of Heat Treated High Carbon Low Alloy Steel," Materials Today: Proceedings, Vol. 5, No. 2, Part 1, pp. 3919-3925, 2018.
[56] X. Mi, J. Han, Y. Sun, Y. Li, W. Hu, and S. Zhan, "Enhanced catalytic degradation by using RGO-Ce/WO3 nanosheets modified CF as electro-Fenton cathode: Influence factors, reaction mechanism and pathways," Journal of Hazardous Materials, Vol. 367, pp. 365-374, 2019.
[57] S. Rahman, K. E. Karim, and M. H. S. Simanto, "Effect of heat treatment on low carbon steel: an experimental investigation," Applied mechanics and materials, Vol. 860, pp. 7-12, 2017.
[58] D. K. Jangir, A. Verma, K. M. Sankar, A. Khanna, and A. Singla, "Influence of grain size on corrosion resistance and electrochemical behaviour of mild steel," International Journal for Research in Applied Science & Engineering Technology, Vol. 6, No. 4, pp. 2875-2881, 2018.

QR CODE