簡易檢索 / 詳目顯示

研究生: 劉欣嫚
HSIN-MAN LIU
論文名稱: 光沉積乙酸鈷錯合物於光陽極釩酸鉍上提升太陽能水分解產氧效率
Photochemical Deposition of Co-Ac on BiVO4 Photoanode for Enhanced Solar Oxygen Production
指導教授: 江佳穎
Chia-Ying Chiang
口試委員: 張家耀
Jia-Yaw Chang
蔡大翔
Dah-Shyang Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 117
中文關鍵詞: 光陽極釩酸鉍光沉積乙酸鈷產氧水分解
外文關鍵詞: Photoanode, Oxygen production, Photochemical deposition, BiVO4, Co-Ac, co-catalyst
相關次數: 點閱:257下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

能源短缺及環境污染是全球高度關注且急需解決的兩大議題,故找出能無汙染地產生能源且同時具有高效益的方法是此類研究者的共同目標。利用太陽能進行光電化學水分解可得氫與氧的產物,故為產生替代能源的有效方法之一。光陽極材料BiVO4(釩酸鉍)具有許多光電化學電池(PEC)的優良特性,例如:符合水分解所需的價帶位置、能隙小(~2.4 eV),能有效地吸收可見光。儘管如此,BiVO4仍有缺點使其發展受限,例如:電子傳導性能差、電洞擴散距離較短(~70 nm)及與水反應動力學緩慢等,而本研究致力於改善與水反應的動力學問題以提升產氧效率。
利用光沉積法將乙酸鈷錯合物(Co-Ac)沉積於BiVO4上,其中光沉積法的優點在於能將觸媒沉積於半導體之光活性位置上,且不需額外供電即可完成樣品製備。中性磷酸緩衝溶液(phosphate buffer)作為電解液,在1.23 V vs. RHE時BiVO4電流表現約為0.68 mA/cm2,而添加Co-Ac後電流表現提升至2.14 mA/cm2,可知添加助產氧催化劑Co-Ac後的電流表現提升的幅度高達三倍。在電解液中加入電洞犧牲劑的方法可以了解半導體表面之電洞注入電解液的效率,在1.23 V vs. RHE時BiVO4大約有20%的電洞能真正注入電解液中,而添加Co-Ac後可以提升至約65%,藉此證明添加助產氧催化劑Co-Ac確實能有效地幫助BiVO4克服與水反應動力學緩慢之缺點以提升產氧效率。


Energy shortage and environmental pollution are the issues that are highly concerned and urgently needed to be resolved. So the common goal of such researchers is to find ways to generate energy without pollution. The use of solar energy for photoelectrochemical water splitting is one of the effective methods to generate alternative energy sources. BiVO4 is selected as the photoanode material because it has many excellent properties as photoelectrochemical cells (PEC), such as valence band boundary range required for water splitting, narrow energy gap (~2.4 eV), and effective absorption of visible light. However, BiVO4 still has short comings that limit its development, such as poor electron mobility, short hole diffusion length (~70 nm), and slow kinetics of reaction with water. In this research, we dedicated to improving the kinetics of reaction with water to enhance oxygen evolution efficiency.
We use photochemical deposition to deposit Co-Ac on BiVO4, it can deposit the catalyst on the photoactive site of the semiconductor without additional power supply. BiVO4 photocurrent showed about 0.68 mA/cm2 in phosphate buffer (pH 7) at 1.23 V vs. RHE, and after adding Co-Ac is about 2.14 mA/cm2, which shows that the performance after adding Co-Ac is up to three times. The method of adding a hole sacrificial agent to the electrolyte can understand the ratio of the hole actually injected into the electrolyte. In this experiment, about 20% of the holes in BiVO4 at 1.23 V vs. RHE can be actually injected into the electrolyte, and after adding Co-Ac can be increased to about 65%, it can be proved that Co-Ac can help BiVO4 overcome the slow kinetics problem to achieve the purpose of improving oxygen evolution efficiency.

目錄 致謝 ii 摘要 i Abstract ii 圖目錄 ix 表目錄 xvii 第一章、緒論 1 1.1研究動機 1 1.2研究方向 2 第二章、文獻回顧 3 2.1光電化學水分解 3 2.2 製備BiVO4奈米光陽極之方法與原理 5 2.2.1有機金屬沉積法(metal-organic deposition, MOD) 5 2.2.2水熱法(hydrothermal) 6 2.2.3電沉積法(electrodeposition) 6 2.3 光陽極BiVO4之優點及缺點 8 2.4光陽極BiVO4之改善方針 9 2.4.1助產氧催化劑(Oxygen evolution catalyst, OEC) 9 2.4.2金屬離子參雜(Doping) 11 2.4.3半導體耦合(Heterojunction) 11 2.5利用光沉積製備Co-Ac助產氧催化劑之原理 13 2.5.1常見助產氧催化劑Co-Pi之啟發 13 2.5.2助產氧催化劑Co-Ac 14 第三章、實驗設備及方法 15 3.1實驗架構 15 3.2實驗藥品、設備及分析儀器 16 3.3 BiVO4/Co-Ac製備流程 19 3.3.1 利用電沉積法製備BiVO4 19 3.3.2利用光沉積法製備Co-Ac 20 3.3.3配置電解液 20 3.4儀器分析原理 21 3.4.1聚焦離子束掃描式電子顯微鏡(FIB-SEM) 21 3.4.2 X-射線繞射分析(XRD) 21 3.4.3傅立葉轉換紅外光譜(FTIR) 22 3.4.4 X-射線光電子光譜(XPS) 22 3.4.5光電化學分析(Photo electrochemical analysis) 23 3.4.5.1三電極系統(Three electrode system) 23 3.4.5.2線性掃描伏安法(LSV) 24 3.4.5.3計時電流法 24 3.4.6.4電化學阻抗頻譜法(EIS) 24 3.4.6感應偶合電漿原子發射光譜儀(ICP) 25 3.4.7紫外光/可見光光譜儀(UV/Vis Spectrometer) 27 3.4.8氣相層析儀(GC) 27 第四章、結果與討論 29 4.1 BiVO4表面型態 29 4.1.1 聚焦離子束掃描式電子顯微鏡(FIB-SEM)分析 29 4.1.2 聚焦離子束掃描式電子顯微鏡之能量色散光譜儀 (FIB-SEM/EDS-Mapping)分析 30 4.2 光沉積產物Co-Ac之存在證明 31 4.2.1聚焦離子束掃描式電子顯微鏡(FIB-SEM)分析 31 4.2.2聚焦離子束掃描式電子顯微鏡之能量色散光譜儀 (FIB-SEM/EDS-Mapping)分析 31 4.2.3穿透式電子顯微鏡(TEM)分析 32 4.2.4感應偶合電漿原子發射光譜儀(ICP)定量分析不同沉積參數 33 4.2.4.1不同沉積時間 33 4.2.4.2不同沉積液濃度 34 4.2.4.3不同光源強度 35 4.2.5傅立葉轉換紅外光譜(FTIR)分析 36 4.2.6 X-射線光電子光譜(XPS)分析 37 4.4 X-射線光電子光譜(XPS)分析反應前後之變化 41 4.4.1 BiVO4中之Bi元素分析 41 4.4.2 BiVO4中之V元素分析 41 4.4.3 BiVO4/Co-Ac中之O元素分析 42 4.4.4 Co-Ac中之Co元素分析 43 4.4.5 Co-Ac中之C元素分析 44 4.4.6 BiVO4/Co-Ac中與電解液生成之P元素分析 45 4.5光電化學分析不同Co-Ac參數 47 4.5.1不同沉積時間 47 4.5.2不同沉積液濃度 49 4.5.3不同光源強度 51 4.6探討光沉積形成之Co-Ac功能 55 4.6.1沉積液中Co存在與否之影響 55 4.6.2沉積液中Ac存在與否之影響 56 4.6.3沉積時光源存在與否之影響 58 4.6.4 Co與Ac結合可達更高效益 60 4.7 Co-Ac幫助BiVO4提升產氧效率之證明 61 4.7.1 Co-Ac自生光催化活性 61 4.7.2紫外光/可見光光譜儀(UV/Vis Spectrometer) 62 4.7.3入射光光電子轉換效率(IPCE) 63 4.7.4吸收光光電子轉換效率(APCE) 65 4.7.5偏壓光電子轉換效率(ABPE) 65 4.7.6電化學阻抗頻譜法(EIS) 66 4.7.7電洞注入效率(Hole injection efficiency) 67 4.7.8電子與電洞分離效率(Separation efficiency) 70 4.7.9氣相層析儀(GC) 71 4.8穩定度測試 74 4.8.1計時電流法 74 4.8.2 BiVO4/Co-Ac不穩定之原因探討 75 4.8.2.1利用ICP觀察金屬溶解程度對穩定度之影響 75 4.8.2.2電子與電洞再結合程度對穩定度之影響 76 4.9材料穩定度改善方針 78 4.9.1將高電壓改成低電壓 78 4.9.1.1光電化學表現 78 4.9.1.2電洞注入效率(Hole injection efficiency) 80 4.9.1.3電解液之感應偶合電漿原子發射光譜儀(ICP)分析 80 4.9.2將中性電解液改成弱鹼性電解液 81 4.9.2.1光電化學表現 81 4.9.2.2電洞注入效率(Hole injection efficiency) 82 4.9.2.3電解液之感應偶合電漿原子發射光譜儀(ICP)分析 83 4.9.3將低濃度電解液改成高濃度電解液 84 4.9.3.1光電化學表現 84 4.9.3.2電洞注入效率(Hole injection efficiency) 85 4.9.3.3電解液之感應偶合電漿原子發射光譜儀(ICP)分析 85 4.9.4穩定度改善前後之比較 87 4.9.4.1光電化學測試觀察其電流密度之差異 87 4.9.4.2氣相層析(GC)觀察其氧氣產量之差異 88 第五章、結論 90 第六章、參考資料 92

[1] S.J.A. Moniz, S.A. Shevlin, D.J. Martin, Z.X. Guo, J. Tang, Visible-light driven heterojunction photocatalysts for water splitting - a critical review, Energy & Environmental Science, 8(2015) 731-759.
[2] R. Lago, G. Bini, M. A. Peña, J.L.G. Fierro, Partial Oxidation of Methane to Synthesis Gas Using LnCoO3 Perovskites as Catalyst Precursors, Journal of catalysis, (1997) 198–209.
[3] A. Irshad, N. Munichandraiah, Photochemical Deposition of Co-Ac Catalyst on ZnO Nanorods for Solar Water Oxidation, Journal of The Electrochemical Society, 162(2015) 235-243.
[4] A. Banerjee, B. Mondal, A. Verma, V.R. Satsangi, R. Shrivastav, A. Dey, S. Dass, Enhancing efficiency of Fe2O3 for robust and proficient solar water splitting using a highly dispersed bioinspired catalyst, Journal of catalysis, 352(2017) 83-92.
[5] K.H. Ye, Z. Wang, H. Li, Y. Yuan, Y. Huang, W. Mai, A novel CoOOH/(Ti, C)- Fe2O3 nanorod photoanode for photoelectrochemical water splitting, Science China Materials, 61(2018) 887-894.
[6] H.C. Chiu, W.H. Huang, L.C. Hsu, Y.G. Lin, Y.H. Lai, C.Y. Lin, Calcium containing iron oxide as an efficient and robust catalyst in (photo-) electrocatalytic water oxidation at neutral pH, Sustainable Energy & Fuels, 2(2018) 271-279.
[7] F. Tang, W. Cheng, H. Su, X. Zhao, Q. Liu, Smoothing Surface Trapping States in 3D Coral-Like CoOOH-Wrapped-BiVO4 for Efficient Photoelectrochemical Water Oxidation, ACS Applied Materials & Interfaces, 10(2018) 6228-6234.
[8] Y. Wang, Y. Wang, R. Jiang, R. Xu, Cobalt Phosphate–ZnO Composite Photocatalysts for Oxygen Evolution from Photocatalytic Water Oxidation, Industrial & Engineering Chemistry Research, 51(2012) 9945-9951.
[9] L. Xia, J. Bai, J. Li, Q. Zeng, L. Li, B. Zhou, High-performance BiVO4 photoanodes cocatalyzed with an ultrathin α-Fe2O3 layer for photoelectrochemical application, Applied Catalysis B: Environmental, 204(2017) 127-133.
[10] J.A. Seabold, K.S. Choi, Efficient and Stable Photo-oxidation of Water by a Bismuth Vanadate Photoanode Coupled with an Iron Oxyhydroxide Oxygen Evolution Catalyst, Journal of The American Chemical Soceity,134(2012) 2186-2192.
[11] S. Xiao, H. Chen, Z. Yang, X. Long, Z. Wang, Z. Zhu, Y. Qu, S. Yang, Origin of the Different Photoelectrochemical Performance of Mesoporous BiVO4 and the FTO Side Illumination, The Journal of Physical Chemistry, 119(2015) 23350-23357.
[12] K.R. Tolod, S. Hernández, N. Russo, Recent Advances in the BiVO4 Photocatalyst for Sun-Driven Water Oxidation: Top-Performing Photoanodes and Scale-Up Challenges, Catalysts ,7(2017).
[13] J.A. Seabold, K.S. Choi, Effect of a Cobalt-Based Oxygen Evolution Catalyst on the Stability and the Selectivity of Photo-Oxidation Reactions of a WO3 Photoanode, Chemistry of Materials, 23(2011) 1105-1112.
[14] D.K. Zhong, M. Cornuz, K. Sivula, M. Grätzel, D.R. Gamelin, Photo-assisted electrodeposition of cobalt-phosphate (Co-Pi) catalyst on hematite photoanodes for solar water oxidation, Energy & Environmental Science, 4(2011) 1759-1764.
[15] A. Irshad, N. Munichandraiah, An oxygen evolution Co-Ac catalyst-the synergistic effect of phosphate ions, Physical Chemistry Chemical Physics, 16(2014) 5412-5422.
[16] S. Dey, B. Mondal, A. Dey, An acetate bound cobalt oxide catalyst for water oxidation: role of monovalent anions and cations in lowering overpotential, Physical Chemistry Chemical Physics, 16(2014) 12221-12227.
[17] E.S. Kim, N. Nishimura, G. Magesh, J.Y. Kim, J.W. Jang, H. Jun, J. Kubota, K. Domen, J.S. Lee, Fabrication of CaFe2O4/TaON Heterojunction Photoanode for Photoelectrochemical Water Oxidation, Journal of The American Chemical Soceity, 135(2013) 5375-5383.
[18] R. Abe, Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 11(2010) 179-209.
[19] M.F. Lichterman, M.R. Shaner, S.G. Handler, B.S. Brunschwig, H.B. Gray, N.S. Lewis, J.M. Spurgeon, Enhanced Stability and Activity for Water Oxidation in Alkaline Media with Bismuth Vanadate Photoelectrodes Modified with a Cobalt Oxide Catalytic Layer Produced by Atomic Layer Deposition, 4(2013) 4188-4191.
[20] Y. Pihosh, I. Turkevych, K. Mawatari, T. Asai, T. Hisatomi, J. Uemura, M. Tosa, K. Shimamura, J. Kubota, K. Domen, T. Kitamori, Nanostructured WO3 /BiVO4 Photoanodes for Efficient Photoelectrochemical Water Splitting, Small, 10(2014) 3692-3699.
[21] K.R. Tolod, S. Hernández, N. Russo, Recent Advances in the BiVO4 Photocatalyst for Sun-Driven Water Oxidation: Top-Performing Photoanodes and Scale-Up Challenges, Catalysts ,7(2017).
[22] S.J.A. Moniz, J. Zhu, J. Tang, 1D Co-Pi Modified BiVO4/ZnO Junction Cascade for Efficient Photoelectrochemical Water Cleavage, Advanced Energy Materials, 4(2014) 1301590.
[23] A. Galembeck, O.L. Alves, Bismuth vanadate synthesis by metallo-organic decomposition: thermal decomposition study and particle size control, Journal of Materials Science, 37(2002) 1923-1927.
[24] A. Galembeck, O.L. Alves, BiVO4 thin film preparation by metalorganic decomposition, Thin Solid Films, 365(2000) 90-93.
[25] B.E. Wu, C.Y. Chiang, Photochemical metal organic deposition of FeOx catalyst on BiVO4 for improving solar-driven water oxidation efficiency, Journal of the Taiwan Institute of Chemical Engineers, 80(2017) 1014-1021.
[26] J. Yu, A. Kudo, Effects of Structural Variation on the Photocatalytic Performance of Hydrothermally Synthesized BiVO4, Advanced Functional Materials, 16(2006) 2163-2169.
[27] K. Pingmuang, A. Nattestad, W. Kangwansupamonkon, G.G. Wallace, S. Phanichphant, J. Chen, Phase-controlled microwave synthesis of pure monoclinic BiVO4 nanoparticles for photocatalytic dye degradation, Applied Materials Today, 1(2015) 67-73.
[28] K.J. McDonald, K.S. Choi, A new electrochemical synthesis route for a BiOI electrode and its conversion to a highly efficient porous BiVO4 photoanode for solar water oxidation, 5(2012) 8553-8557.
[29] D.K. Lee, K.S. Choi, Enhancing long-term photostability of BiVO4 photoanodes for solar water splitting by tuning electrolyte composition, Nature Energy, 3(2017) 53-60.
[30] 吳伯恩, FeOx/BiVO4異質結構光化學電池與水分解之應用, 國立臺灣科技大學化學工程研究所, 2017.
[31] J.H. Kim, J.S. Lee, Elaborately Modified BiVO4 Photoanodes for Solar Water Splitting, Advanced Materials, (2019) 1806938.
[32] D. Wang, R. Li, J. Zhu, J. Shi, J. Han, X. Zong, C. Li, Photocatalytic Water Oxidation on BiVO4 with the Electrocatalyst as an Oxidation Cocatalyst: Essential Relations between Electrocatalyst and Photocatalyst, The Journal of Physical Chemistry C, 116(2012) 5082-5089.
[33] E.S. Kim, H.J. Kang, G. Magesh, J.Y. Kim, J.W. Jang, J.S. Lee, Improved Photoelectrochemical Activity of CaFe2O4/BiVO4 Heterojunction Photoanode by Reduced Surface Recombination in Solar Water Oxidation, ACS Applied Materials & Interfaces, 6(2014) 17762-17769.
[34] Y. Bu, J. Tian, Z. Chen, Q. Zhang, W. Li, F. Tian, J.P. Ao, Optimization of the Photo‐Electrochemical Performance of Mo‐Doped BiVO4 Photoanode by Controlling the Metal-Oxygen Bond State on (020) Facet, ACS Applied Materials & Interfaces, 4(2017) 1601235.
[35] Q. Zeng, J. Li, L. Li, J. Bai, L. Xia, B. Zhou, Synthesis of WO3/BiVO4 photoanode using a reaction of bismuth nitrate with peroxovanadate on WO3 film for efficient photoelectrocatalytic water splitting and organic pollutant degradation, Applied Catalysis B: Environmental, 217(2017) 21-29.
[36] X. Zhang, S. Chen, X. Quan, H. Zhao, Preparation and characterization of BiVO4 film electrode and investigation of its photoelectrocatalytic (PEC) ability under visible light, Separation and Purification Technology, 64(2009) 309-313.
[37] S.S. Kalanur, I.H. Yoo, J. Park, H. Seo, Insights into the electronic bands of WO3/BiVO4/TiO2, revealing high solar water splitting efficiency, Journal of Materials Chemistry A, 5 (2017) 1455-1461.
[38] J. Su, X.X. Zou, G.D. Li, X. Wei, C. Yan, Y.N. Wang, J. Zhao, L.J. Zhou, J.S. Chen, Macroporous V2O5-BiVO4 Composites: Effect of Heterojunction on the Behavior of Photogenerated Charges, The Journal of Physical Chemistry C, 115(2011) 8064-8071.
[39] B.C. Xiao, L.Y. Lin, J.Y. Hong, H.S. Lin, Y.T. Song, Synthesis of a monoclinic BiVO4 nanorod array as the photocatalyst for efficient photoelectrochemical water oxidation, RSC Advances, 7(2017) 7547-7554.
[40] H.L. Tan, R. Amal, Y.H. Ng, Exploring the Different Roles of Particle Size in Photoelectrochemical and Photocatalytic Water Oxidation on BiVO4, ACS Applied Materials & Interfaces, 8(2016) 28607-28614.
[41] S. Nishizawa, T. Yokobori, T. Shioya, N. Teramae, Facilitated Transfer of Hydrophilic Anions across the Nitrobenzene-Water Interface by a Hydrogen-Bonding Ionophore: Applicability for Multianalyte Detection, The Chemical Society of Japan, (2001) 1058-1059.
[42] R. Saito, Y. Miseki, K. Sayama, Highly efficient photoelectrochemical water splitting using a thin film photoanode of BiVO4/SnO2/WO3 multi-composite in a carbonate electrolyte, Chemical Communications, 48(2012) 3833-3835.
[43] C.W. Kim, Y.S. Son, M.J. Kang, D.Y. Kim, Y.S. Kang, (040)-Crystal Facet Engineering of BiVO4 Plate Photoanodes for Solar Fuel Production, Advanced Energy Materials, 6(2016) 1501754.
[44] 黃律維, 以甘油作為BiVO4光電極水分解反應之犧牲試劑並同時進行甘油 氧化之研究, 國立臺灣科技大學化學工程研究所, 2018.
[45] D. Lee, A. Kvit, K.S. Choi, Enabling Solar Water Oxidation by BiVO4 Photoanodes in Basic Media, Chemistry of Materials, 30(2018) 4704-4712.
[46] C.F. Liu, Y.J. Lu, C.C. Hu, Effects of Anions and pH on the Stability of ZnO Nanorods for Photoelectrochemical Water Splitting, ACS Omega, 3(2018) 3429-3439.
[47] K. Sayama, N. Wang, Y. Miseki, H. Kusama, N. Onozawa-Komatsuzaki, H. Sugihara, Effect of Carbonate Ions on the Photooxidation of Water over Porous BiVO4 Film Photoelectrode under Visible Light, Chemistry Letters, 39(2010) 17-19.

無法下載圖示 全文公開日期 2024/07/10 (校內網路)
全文公開日期 2024/07/10 (校外網路)
全文公開日期 2024/07/10 (國家圖書館:臺灣博碩士論文系統)
QR CODE