簡易檢索 / 詳目顯示

研究生: 吳信哲
Tanapon - Sukachonmakul
論文名稱: 聚矽氮烷與其聚合物轉變-矽基陶瓷對氮化鋁表面處理於矽橡膠複合材料之應用
Surface Modification of Aluminum Nitride by Polysilazane and Its Polymer-derived Silicon-based Ceramics for Silicone Rubber Composites
指導教授: 邱顯堂
Hsien-Tang Chiu
口試委員: 邱文英
Wen-Yen Chiu
楊銘乾
Ming-Chien Yang
翁祖炘
Teuu-Hsing Ueng
陳志堅
Jyh-Chien Chen
施劭儒
Shao-Ju Shih
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 132
中文關鍵詞: 氮化鋁矽基陶瓷熱傳導係數聚矽氮烷矽橡膠
外文關鍵詞: Aluminum nitride, silicon-based ceramics, thermal conductivity, polysilazane, silicone rubber
相關次數: 點閱:430下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究主要以聚矽氮烷(polysilazane,PSZ) 包覆於氮化鋁(AlN)粉末表面,分別利用空氣(air)、氬氣(Ar)、氮氣(N2)和氨氣(NH3)不同氣體環境在700和1600 oC溫度下進行熱處理,在不同熱處理條件下包覆AlN的PSZ將轉變成矽基陶瓷(Si-based ceramics)結構包覆著AlN,並應用於矽橡膠複合材料的導熱填充材。本研究將分成三個部分進行探討,藉由PSZ和Si-based ceramic結構的表面改質改善矽橡膠複合材料導熱的可行性。

本研究第一部分聚焦於利用濕氣交聯法,將PSZ和其聚合物轉變陶瓷─矽氧碳陶瓷(polymer-derived amorphous silicon oxycarbide (SiOC) ceramic) 包覆於AlN粉末表面,並在air中700 oC熱處理溫度下促使PSZ轉變陶瓷─SiOC包覆在AlN表面。經由傅氏紅外線轉換光譜儀(FTIR)、化學分析電子能譜儀(XPS)和電子顯微鏡(SEM),結果顯示AlN粉體表面成功的被包覆於PSZ和SiOC薄膜。並發現到PSZ和SiOC薄膜改善界面附著性,由於在填充物的基體界面的熱邊界層阻力降低,導致改質後的AlN粉體(PSZ/AlN 和 SiOC/AlN)和矽橡膠複合材料的導熱性增加。然而,引進的SiOC作為AlN和矽橡膠之間的中間層可以幫助增加熱能輸送在填料與基體的界面而不是使用PSZ。這個結果是由於PSZ在air中經由700oC熱處理後造成表面粗糙度和膜的厚度減少。

本研究第二部分聚焦於使用陶瓷前驅體-PSZ利用包覆法包覆AlN粉體,用於製備SiOC和矽氧氮碳(SiONC)陶瓷薄膜,並依據熱處理溫度700oC在不同氣體環境(air、Ar、N2和NH3)下,分別使PSZ轉變成SiOCair和SiONC (Ar, N2 and NH3)。經由FTIR, X射線繞射分析儀(XRD) 和XPS測試結果發現有非晶SiOCair和SiONC (Ar, N2 and NH3)薄膜在AlN表面。引進氣體環境後的SiOCair和SiONC (Ar, N2 and NH3)薄膜在AlN表面,矽橡膠和AlN之間界面接著性有顯著底改善。透過AFM可發現PSZ熱處理在不同氣體環境之下影響薄膜在AlN表面型態,即SiOCair和SiONC NH3薄膜比起SiONC (Ar, N2 )薄膜平滑。除此之外,SiOCair和SiONC (Ar, N2 and NH3)包覆AlN薄膜表面粗糙度的下降促使矽橡膠複合材料熱傳導提升。

本研究第三部分聚焦於使用陶瓷前驅體-PSZ利用包覆法包覆AlN粉體,接著熱處理溫度1600oC在不同氣體環境(air、Ar、N2和NH3)下製備Si-based ceramics/AlN (Si/AlN)複合粉末。根據XRD、XPS 和SEM/EDS之分析,顯示確實存在著Si-based ceramics在AlN粒子上,其中包括了在air熱處理之下Si/AlNair表面的二氧化矽(SiO2)、Ar中Si/AlNAr表面的碳化矽晶鬚(SiC whisker)、N2 中Si/AlNN2表面的SiC whisker/氮化矽(Si3N4)晶粒以及NH3中Si/AlNNH3表面的Si3N4。此外,使用Ar和NH3熱處理後的Si/AlN複合粉末添加於矽橡膠可提升此複合材料的熱傳導性能,這可能是因為添加了高導熱奈米級SiC whiskers和Si3N4陶瓷膜在於Si/AlNAr與Si/AlNNH3的表面。

由上述實驗結果得知,使用SiOCair and SiONC(Ar, N2 and NH3)結構並參與導熱粉末的表面改質,可以經由其形成的陶瓷膜層附著於AlN表層,將其導入矽像膠達到提升更高的熱傳導效果。此外,Si/AlN經由在Ar與NH3下1600 oC裂解,可以應用為導熱粉末。


In this work, we aimed to use polysilazane (PSZ) to coat on aluminum nitride (AlN) by using a dip coating method, followed by pyrolysis at 700 and 1600 oC under air, Ar, N2 and NH3 atmospheres. The pyrolysis under different conditions allowed PSZ coated AlN to convert into different components of Si-based ceramics coated AlN, and then were used as thermally conductive fillers in silicone rubber composites. This work addressed three parts respectively to discuss the feasibility of an alternative surface modification by using PSZ and Si-based ceramics to improve the thermal conductivity of silicone rubber composites.

Part (i) PSZ and its polymer-derived amorphous silicon oxycarbide (SiOC) ceramic were coated on AlN by using a dip-coating method to allow moisture-crosslinking of PSZ on AlN, followed by heat treatment at 700oC in air to convert PSZ into SiOC on AlN. The results from FTIR, XPS and SEM indicated that the surface of AlN was successfully coated by PSZ and SiOC film. It was found that the introduction of PSZ and SiOC film help improve in the interfacial adhesion between the modified AlN (PSZ/AlN and SiOC/AlN) and silicone rubber lead to the increase in the thermal conductivity of the composites since the thermal boundary resistance at the filler-matrix interface was decreased. However, the introduction of SiOC as an intermediate layer between AlN and silicone rubber could help increase the thermal energy transport at the filler-matrix interface rather than using PSZ. This result was due to the decrease in the surface roughness and thickness of SiOC film after heat treatment at 700 oC in air.

Part (ii) SiOC and silicon oxynitrocarbide (SiONC) ceramic films coated ALN were prepared by using preceramic-PSZ with dip-coating method, followed by pyrolysis at 700 oC in different (air, Ar, N2 and NH3) atmospheres to convert PSZ into SiOCair and SiONC(Ar, N2 and NH3) ceramics. The existence of amorphous SiOCair and SiONC(Ar, N2 and NH3) ceramic films on AlN surface was characterized by FTIR, XRD and XPS. The interfacial adhesion between silicone rubber and AlN was significantly improved after the introduction of amorphous SiOCair and SiONC(Ar, N2 and NH3) ceramic films on AlN surface. It can be observed from AFM that the pyrolysis of PSZ at different atmosphere strongly affected to films morphology on AlN surface as SiOCair and SiONCNH3 ceramic films were more flat and smooth than SiONCN2 and SiONCAr ceramic films. Besides, the enhancement of the thermal conductivity of silicone rubber composites was found to be related to the decrease in the surface roughness of SiOCair and SiONC(Ar, N2 and NH3) ceramic films on AlN surface.

Part (iii) Silicon-based ceramics and aluminum nitride (Si/AlN) were fabricated by pyrolysis of preceramic-PSZ coated AlN at 1600 oC in air, Ar, N2 and NH3 atmospheres. The results from XRD, XPS and SEM/EDS revealed the existence of crystalline phase of Si-based ceramics on AlN particles including SiO2 in Si/AlNair, SiC whisker in Si/AlNAr, SiC whisker/Si3N4 grain in Si/AlNN2, and Si3N4 ceramics in Si/AlNNH3. It was found that the thermal conductivity of silicone rubber filled with Si/AlN hybrid fillers which were fabricated in Ar and NH3, was improved. This might be due to the existence of nanoscale SiC whiskers and a thermal conductive layer of Si3N4 on Si/AlNAr and Si/AlNNH3 surface, respectively.

This present work provided an alternative surface modification of thermally conductive fillers by coating with amorphous SiOCair and SiONC(Ar, N2 and NH3) ceramic films to improve the interfacial adhesion between filler-matrix interface, then enhanced the thermal conductivity of silicon rubber composites. Moreover, Si/AlN hybrid fillers pyrolyzed at 1600 oC in Ar and NH3 could be applicable to use as thermally conductive fillers.

中文摘要 I ABSTRACT III 誌謝 V LIST OF FIGURES IX LIST OF TABLES XII CHAPTER 1 INTRODUCTION 1 1.1 Motivation 2 1.2 Research Objectives 4 1.3 References 4 CHAPTER 2 RESEARCH BACKGROUND 6 2.1 Heat Transfer 7 2.1.1 Definition 7 2.1.2 Mechanism 7 2.1.3 Thermal conductivity measurement 11 2.1.3.1 Steady-state methods 11 2.1.3.2 Transient methods 12 2.2 Thermally Conductive Polymer Materials 18 2.2.1 Fillers for thermally conductive composites 20 2.2.1.1 Ceramic fillers 22 2.2.1.2 Metallic fillers 25 2.2.1.3 Carbon-based fillers 26 2.2.2 Application of thermally conductive polymer composites. 26 2.2.3 Improvement of the thermal conductivity in thermally conductive polymer composites. 31 2.3 Preceramic Polymer 35 2.3.1 The classification of preceramic polymer 36 2.3.2 Advantages of preceramic polymer 39 2.4 Polysilazane 41 2.4.1 Synthesis and structure of polysilazane 41 2.4.2 Crosslinking of Polysilazane 44 2.4.3 Properties and application 46 2.4.4 Processing from PSZ to ceramic materials 47 2.5 References 50 CHAPTER 3 SURFACE MODIFICATION OF ALUMINUM NITRIDE BY POLYSILAZANE AND ITS POLYMER-DERIVED AMORPHOUS SILICON OXYCARBIDE CERAMIC FOR THE ENHANCEMENT OF THERMAL CONDUCTIVITY IN SILICONE RUBBER COMPOSITE 60 Abstract 61 3.1 Introduction 62 3.2 Experimental Methods and Materials 64 3.2.1 Materials 64 3.2.2 Surface modification of AlN 64 3.2.3 Preparation of silicone rubber filled PSZ/AlN and SiOC/AlN 64 3.2.4 Characterization 66 3.3 Results and Discussion 67 3.3.1 Surface Characterization of Polysilazane and Its Polymer-derived Amorphous Silicon Oxycarbide Ceramic Coated Aluminum Nitride 67 3.3.2 Effect of polysilazane and its polymer-derived amorphous silicon oxycarbide ceramic film coated aluminum nitride on thermal conductivity of silicone rubber composites 76 3.3.3 Characterization of thermal stability and mechanical properties of silicone rubber filled with PSZ/AlN and SiOC/AlN 80 3.4 Conclusions 82 3.5 References 83 CHAPTER 4 EFFECT OF PYROLYSIS ATMOSPHERES ON THE MORPHOLOGY OF POLYMER-DERIVED SILICON OXYNITROCARBIDE CERAMIC FILMS COATED ALUMINUM NITRIDE SURFACE AND THE THERMAL CONDUCTIVITY OF SILICONE RUBER COMPOSITES 88 Abstract 89 4.1 Introduction 90 4.2 Experimental Methods and Materials 92 4.2.1 Materials 92 4.2.2 Surface modification of AlN 92 4.2.3 Preparation of silicone rubber filled PSZ/AlN and SiOC/AlN 92 4.2.4 Characterization 93 4.3 Results and Discussion 95 4.3.1 Characterization of SiOC/AlNair and SiONC/AlN(Ar, N2 and NH3) 95 4.3.2 Thermal conductivity of silicone rubber filled with SiOC/AlNair and SiONC/AlN(Ar, N2 and NH3). 101 4.4 Conclusions 108 4.5 References 109 CHAPTER 5 FABRICATION AND CHARACTERIZATION OF SILICON-BASED CERAMIC/ALUMINUM NITRIDE AS THERMALLY CONDUCTIVE HYBRID FILLER IN SILICONE RUBBER COMPOSITE 113 Abstract 114 5.1 Introduction 115 5.2 Experimental Methods and Materials 117 5.3 Results and Discussion 118 5.3.1 Characterization of Si/AlN hybrid fillers 118 5.3.2 Thermal conductivity of silicone rubber filled with Si/AlN hybrid fillers 124 5.4 Conclusions 126 5.5 References 127 CHAPTER 6 CONCLUSIONS 130 CONCLUSIONS 131

Reference Chapter 1
1. K. Wattanakul, H. Manuspiya and N. Yanumet, Thermal Conductivity and Mechanical Properties of BN-filled Epoxy Composite: Effects of Filler Content, mixing conditions, and BN agglomerate size, Journal of Composite Materials, 2011, 45, 1967-1980.
2. L.C. Sim, S.R. Ramanan, H. Ismail, K.N. Seetharamu and T.J. Goh, Thermal Characterization of Al2O3 and ZnO Reinforced Silicone Rubber as Thermal Pads for Heat Dissipation Purposes, Thermochimica Acta, 2005, 430, 155-165.
3. W. Zhou, D. Yu, C. Wang, Q. An and S. Qi, Effect of Filler Size Distribution on the Mechanical and Physical Properties of Alumina-filled Silicone Rubber, Polymer Engineering and Science, 2008, 48, 1381-1388.
4. R. Prasher, Thermal Interface Materials: Historical Perspective, Status, and Future Directions, Proceedings of the IEEE, 2006, 94, 1571-1586.
5. W. Zhou, S. Qi, C. Tu, H. Zhao, C. Wang and J. Kou, Effect of The Particle Size of Al2O3 on the Properties of Filled Heat-Conductive Silicone Rubber, Journal of Applied Polymer Science, 2007, 104, 1312-1318.
6. Q. Mu, S. Feng and G. Diao, Thermal Conductivity of Silicone Rubber Filled with ZnO, Polymer Composites, 2007, 28, 125-130.
7. E.S. Lee, S.M. Lee, D.J. Shanefield and W.R. Cannon, Enhanced Thermal Conductivity of Polymer Matrix Composite via High Solids Loading of Aluminum Nitride in Epoxy Resin, Journal of American Ceramic Society, 2008, 91, 1169-1174.
8. A.F. Junior and D.J. Shanafield, Thermal Conductivity of Polycrystalline Aluminum Nitride (AlN) Ceramics, Ceramica, 2004, 50, 247-253.
9. M. Ohashi, S. Kawakami and Y. Yokagawa, Spherical Aluminum Nitride Fillers for Heat-Conducting Plastic Packages,Journal of American Ceramic Society, 2005, 88, 2615-2618.
10. B. Lee, J.Z. Liu, B. Sun, C.Y. Shen and G.C. Dai, Thermally Conductive and Electrically Insulating EVA Composite Encapsulants for Solar Photovoltaic (PV) Cell, Express Polymer Letters, 2008, 2, 357-363.
11. A. Lukacs, Microsilica Addition as an Antihydration Technique for Magnesia-Containing Refractory Castables, American Ceramic Society Bulletin, 2003, 86, 9301-9306.
12. M.A. Shayed, C. Cherif, R.D. Hund and T. Cheng, Carbon and Glass Fibers Modified by Polysilazane Based Thermal Resistant Coating, Textile Research Journal, 2010, 80, 1118-1128.
13. J. Wan, M.J. Gasch and A.K. Mukherjee, Effect of Ammonia Treatment on the Crystallization of Amorphous Silicon–Carbon–Nitrogen Ceramics Derived from Polymer Precursor Pyrolysis, Journal of the American Ceramic Society, 2002, 85, 554-564.
14. E. Kroke, Y.L. Li, C. Konetschny, E. Lecomte, C. Fasel and R. Riedel, Silazane Derived Ceramics and Related Materials, Materials Science and Engineering: R, 2000, 26, 97-199.

Reference Chapter 2
1. Y.A. Cengel, Heat Transfer a Practical Approach, first ed., McGraw-Hill, New Jersey, 1998.
2. F. Kreith, R.M. Manglik, M.S. Bohn, Principles of Heat Transfer,Seventh ed., Cengage Learning, Connecticut, 2011.
3. http://www.geo.mtu.edu/~hamorgan/bigideaswelcome.html
4. W.A. Wakehamand, M.J. Assael, Thermal conductivity measurement, in: J.G. Webster (Eds.) The Measurement Instrumentation and Sensors, CRC press, Florida, 1999, Ch. 33.
5. E.S. Dettmer, B.M. Romenesko, H.K. Charles, B.G. Carkhuff and D.J. Merrill,
6. Steady-State Thermal Conductivity Measurements of AlN and SiC Substrate Materials, IEEE Transactions on Component Hybrids and Technology, 1989, 12, 543-547.
7. ASTM C518
8. www.hotdiskinstruments.com
9. ISO 22007-2.
10. Hot Disk service Manual.
11. W. Wang, S. Sokhansanj, J. Tang and P. Winter, H—Postharvest Technology: Determination of Thermal Conductivity, Specific Heat and Thermal Diffusivity of Borage Seeds, Biosystems Engineering, 2002, 82, 169-176.
12. H. Lobo and C. Cohen, Measurement of Thermal Conductivity of Polymer Melts by the Line-Source Method, Polymer Engineering and Science, 1990, 30, 65-70.
13. ASTM D5334-00.
14. H.M. Roder, A Transient Hot Wire Thermal Conductivity Apparatus for Fluids, Journal of Research of the National Bureau of Standards, 1981, 86, 457-493.
15. ASTM E1461.
16. F. Cernuschi, L. Lorenzoni, P. Bianchi and A. Figari, The Effects of Sample Surface Treatments on Laser Flash Thermal Diffusivity Measurements, Infrared Physics & Technology, 2002, 43, 133-138.
17. G. Penco, D. Barni, P. Michelato and C. Pagani, Thermal Properties Measurements Using Laser Flash Technique at Cryogenic Temperature, Proceedings of the 2001 Particle Accelerator Conference, 2001, 1231-1233.
18. T. Yamane, N. Nagai, S.I. Katayama and M. Todoki, Measurement of Thermal Conductivity of Silicon Dioxide Thin Film Using a 3 Omega Method, Journal of Applied Physics, 2002, 91, 9772-9776.
19. H. Wang and M. Sen, International Analysis of the 3-Omega Method for Thermal Conductivity Measurement, Journal of Heat and Mass Transfer, 2009, 52, 2102-2109.
20. D. de Koninck, doctoral thesis, Department of Mechanical Engineering, McGill University, Montreal, Canada, 2008.
21. A.J. Schmidt, R. Cheaito and M. Chiesa, A Frequency-Domain Thermoreflectance Method for the Characterization of Thermal Properties, Review of Scientific Instrument, 2009, 80, 094901.
22. Y.K. Koh, S.L. Singer, W. Kim, J.M.O. Zide, H. Lu, D.G. Cahill, A. Majumdar and A. C. Gossard, Comparison of the 3ω Method and Time-domain Thermoreflectance for Measurements of the Cross-plane Thermal Conductivity of Epitaxial Semiconductors, Journal of Applied Physics, 2009, 105, 054303.
23. A. Tsekmes, R. Kochetov, P.H.F. Morshuis and J.J. Smit, Thermal Conductivity of Polymeric Composites: A review, IEEE International Conference on Solid Dielectrics, 2013, 678-681.
24. Z. Han and A. Fina, Thermal Conductivity of Carbon Nanotubes and Their Polymer Nanocomposites: A review, Progress in Polymer Science 2010, DOI: 10.1016/j.progpolymsci.2010.11.004.
25. H.E. Dehaghani and M. Nazempour, Thermal conductivity of nanoparticles filled polymers, in: A. Hashim (Eds.) Smart Nanoparticles Technology, InTech, Rijeka, 2012, Ch. 23.
26. J. Hong, D.W. Park and S.E. Shim, A Review on Thermal Conductivity of Polymer Composites Using Carbon-Based Fillers : Carbon Nanotubes and Carbon Fibers, Carbon Letters, 2010, 11, 347-356.
27. W.D. Callister, Materials Science and Engineering: An Introduction, seventh ed., John Wiley & Sons, New York, 2006.
28. G.A. Slack, Nonmetallic Crystals with High Thermal Conductivity, Journal of Physics and Chemistry of Solids, 1973, 34, 321-335.
29. A.F. Junior and D.J. Shanafield, Thermal Conductivity of Polycrystalline Aluminum Nitride (AlN) Ceramics, Ceramica, 2004, 50, 247-253.
30. W.D. Kingery, H.K. Bowen and D.R. Uhlmann, Introduction to Ceramics, second ed., John Wiley & Sons, New York, 1976.
31. M. Jonson and G.D. Mahan, Mott's Formula for the Thermopower and the Wiedemann-Franz law, Physical Review B, 1980, 21, 4223-4229.
32. X. Huang, R. Jiang and T. Tanaka, A Review of Dielectric Polymer Composites with High Thermal Conductivity, IEEE Electrical Insulation Magazine, 2011, 27, 8-16.
33. M. Kozako, Y. Okazaki, M. Hikita and T. Tanaka, Preparation and Evaluation of Epoxy Composite Insulating Materials toward High Thermal Conductivity, 10th IEEE International Conference on Solid Dielectrics, 2010, July 4-9, 1-4.
34. G. Momen and M. Farzaneh, Survey of Micro/nano Filler Use to Improve Silicone Rubber for Outdoor Insulators, Reviews on Advanced Materials Science, 2011, 27, 1-13.
35. Z. Wang, Y. Lu, J. Liu, Z. Dang, L. Zhang and W. Wang, Preparation of Nano-zinc Oxide/EPDM Composites with Both Good Thermal Conductivity and Mechanical Properties, Journal of Applied Polymer Science, 2011, 119, 1144-1155.
36. http://electroiq.com/blog/2005/07/thermal-conductivity-in-advanced-chips.
37. W.S. Lee and J. Yu, Comparative Study of Thermally Conductive Fillers in Underfill for the Electronic Components, Diamond Related Materials, 2005, 14, 1647-1653.
38. A.F. Junior and D.J. Shanafield, Thermal Conductivity of Polycrystalline Aluminum Nitride (AlN) Ceramics, Ceramica, 2004, 50, 247-253.
39. J. Wang, W.L. Wang, P.D. Ding, Y.X. Yang, L. Fang, J. Esteve, M.C. Poly and G. Sanchez, Synthesis of Cubic Aluminum Nitride by Carbothermal Nitridation Reaction, Diamond and Related Materials, 1999, 8, 1342-1344.
40. S. Fale, A. Likhite and J. Bhatt, Nucleation Criteria for the Formation of Aluminum Nitride in Aluminum Matrix by Nitridation, Transactions of the Indian Institute of Metals, 2013, 66, 265-271.
41. Y.C. Lan, X.L. Chen, Y.G. Cao, Y.P. Xu, L.D. Xun, T. Xu and J.K. Liang, Low-temperature Synthesis and Photoluminescence of AlN, Journal of Crystal Growth, 1999, 207, 247-250.
42. G.A. Slack, R.A. Tanzilli, R.O. Pohl, J.W. Vandersande, Nonmetallic Crystals with High Thermal Conductivity, Journal of Physic and Chemistry of Solids, 1987, 48, 641-647.
43. N. Sinha, G.E. Wabiszewski, R. Mahameed, V.V. Felmetsger, S.M. Tanner, R.W. Carpick and G. Piazza, Piezoelectric Aluminum Nitride Nanoelectromechanical Actuators, Applied Physics Letters, 2009, 95, 053106.
44. A. de Pablos, M.I. Osendi and P. Miranzo, Effect of Microstructure on the Thermal Conductivity of Hot-Pressed Silicon Nitride Materials, Journal of American Ceramic Society, 2002, 85, 200-206.
45. K. Wattanakul, H. Manuspiya and N. Yanumet, Effective Surface Treatments for Enhancing the Thermal Conductivity of BN-filled Epoxy Composite, Journal of Applied Polymer Science, 2011, 119, 3234-3243.
46. B. Zhang, J.B. Li, J.J. Sun, S.X. Zhang, H.Z. Zhai and Z.W. Du, Nanometer Silicon Carbide Powder Synthesis and its Dielectric Behavior in the GHz Range, Journal of European Ceramic Society, 2002, 22, 93-99.
47. M.Z. Iqbal, G.M. Mamoor, T. Bashir, M.S. Irfan and M.B. Manzoor, A Study of Polystyrene-Metal Powder Conductive Composites, Journal of Chemical Engineering, 2010, 25, 1-4.
48. K. Yang and M. GU, Enhanced Thermal Conductivity of Epoxy Nanocomposites Filled with Hybrid Filler System of Triethylenetetramine-functionalized Multi-walled Carbon Nanotube/silane-modified Nano-sized Silicon Carbide, Composites: Part A, 2010, 41, 215-221.
49. S. Han, J.T. Lin, Y. Yamada and D.D.L. Chung, Enhancing the Thermal Conductivity and Compressive Modulus of Carbon Fiber Polymer-Matrix Composites in the Through-Thickness Direction by Nanostructuring the Interlaminar Interface with Carbon Black, Carbon, 2008, 46, 1060-1071.
50. R. Prasher, Thermal Interface Materials: Historical Perspective, Status, and Future Directions, Proceedings of the IEEE, 2006, 94, 1571-1586.
51. W. Zhou, D. Yu, C. Wang, Q. An and S. Qi, Effect of Filler Size Distribution on the Mechanical and Physical Properties of Alumina-filled Silicone Rubber, Polymer Engineering and Science, 2008, 48, 1381-1388.
52. W. Zhou, S. Qi, C. Tu, H. Zhao, C. Wang and J. Kou, Effect of The Particle Size of Al2O3 on the Properties of Filled Heat-Conductive Silicone Rubber, Journal of Applied Polymer Science, 2007, 104, 1312-1318.
53. L.C. Sim, S.R. Ramanan, H. Ismail, K.N. Seetharamu and T.J. Goh, Thermal Characterization of Al2O3 and ZnO Reinforced Silicone Rubber as Thermal Pads for Heat Dissipation Purposes, Thermochimica Acta, 2005, 430, 155-165.
54. J. Anthony and Jr. O’lenick, Silicone Chemistry, 1999.
55. Data sheet of WACKER.
56. Silicone: Preparation, Properties and Performance Andre Colas.
57. W. Kim, J.W. Bae, I.D. Choi and Y.S. Kim, Thermally Conductive EMC (Epoxy Molding Compound) for Microelectronic Encapsulation, Polymer engineering and Science, 1989, 39, 756-766.
58. W. Peng, X. Huang, J. Yu, P. Jiang and W. Liu, Electrical and Thermophysical Properties of Epoxy/Aluminum Nitride Nanocomposites: Effects of Nanoparticle Surface Modification, Composites: Part A, 2010, 41, 1201-1209.
59. K.C. Yung, B.L. Zhu, T.M. Yue and C.S. Xie, Development of Epoxy-matrix Composite with Both High-thermal Conductivity and Low-dielectric Constant via Hybrid Filler systems, Journal of Applied Polymer Science, 2010, 116, 518-527.
60. B. Lee, J.Z. Liu, B. Sun, C.Y. Shen and G.C. Dai, Thermally Conductive and Electrically Insulating EVA Composite Encapsulants for Solar Photovoltaic (PV) Cell, Express Polymer Letters, 2008, 2, 357-363.
61. L. Wang, F. Li and Z. Su, Effective Thermal Conductivity Behavior of Filled Vulcanized Perfluoromethyl Vinyl Ether Rubber, Journal of Applied Polymer Science, 2008, 108, 2968-2974.
62. Z. Li, W. Wu, H. Chen, Z. Zhu, Y. Wang and Y. Zhang, Thermal Conductivity of Micro/Nano Filler Polymeric Composites, RSC Advances, 2013, 3, 6417-6428.
63. P. Greenwood, R.H. Thring and R. Chen, Conductive Materials for Polymeric Bipolar Plates: Electrical, Thermal and Mechanical Properties of Polyethylene-carbon Black/Graphite/Magnetite Blends, Journal of Materials: Design and Applications, 2012, 227, 226-242.
64. http://www.opteminc.com/thermally-conductive-polymers
65. US pat. 5 523 049, 1996.
66. Y. Xu, D.D.L. Chung and C. Mroz, Thermally Conducting Aluminum Nitride Polymer-matrix Composites, Composites Part A, 2001, 32, 1749-1757.
67. T. Zhou, X. Wang, G.U. Mingyuan and X. Liu, Study of the Thermal Conduction Mechanism of Nano-SiC/DGEBA/EMI-2,4 Composites, Polymer 2008, 49, 4666-4672.
68. H. He, R. Fu, Y. Han, Y. Shen and X. Song, Thermal Conductivity of Ceramic Particle Filled Polymer Composites and Theoretical Predictions, Journal of Materials Science, 2007, 42, 6749-6754.
69. K. Wattanakul, H. Manuspiya and N. Yanumet, Thermal Conductivity and Mechanical Properties of BN-filled Epoxy Composite: Effects of Filler Content, mixing conditions, and BN agglomerate size, Journal of Composite Materials, 2011, 45, 1967-1980.
70. C.Y. Hsieh and S.L. Chung, High Thermal Conductivity Epoxy Molding Compound Filled with a Combustion Synthesized AlN Powder, Journal of Applied Polymer Science, 2006, 102, 4734-4740.
71. W. Zhou, C. Wang, Q. An and H. Ou, Thermal Properties of Heat Conductive Silicone Rubber Filled with Hybrid Fillers, Journal of Composites Materials, 2008, 42, 173-187.
72. G.W. Lee, M. Park, J. Kim, J.I. Lee and H.G. Yoon, Enhanced Thermal Conductivity of Polymer Composites Filled with Hybrid Filler, Composites Part A, 2006, 37, 727-734.
73. Y. Han, S. Lv, C. Hao, F. Ding and Y. Zhang, Thermal Conductivity Enhancement of BN/Silicone Composites Cured under Electric Field: Stacking of Shape, Thermal Conductivity, and Particle Packing Structure Anisotropies, Thermochim. Acta, 2012, 529, 68-73.
74. US pat. 0 097 380 A1, 2014.
75. X. Huang, T. Iizuka, P. Jiang, Y. Ohki and T. Tanaka, Role of Interface on the Thermal Conductivity of Highly Filled Dielectric Epoxy/AlN Composites, Journal of Physical Chemistry C, 2012, 116, 13629-13639.
76. W. Zhou and D. Yu, Thermal and Dielectric Properties of the Aluminum Particle/Epoxy Resin Composites, Journal of Applied Polymer Science, 2010, 118, 3156-3166.
77. A.K. Roy, B.L. Farmer, V. Varshney, S. Sihn, J. Lee and S. Ganguli, Importance of Interfaces in Governing Thermal Transport in Composite Materials: Modeling and Experimental Perspectives, ACS Applied Materials & Interfaces, 2012, 4, 545-563.
78. P.E. Hopkins, L.M. Phinney, J.R. Serrano and T.E. Beechem, Effects of Surface Roughness and Oxide Layer on the Thermal Boundary Conductance at Aluminum/Silicon Interfaces, Physics Letters B, 2010, 82, 085307.
79. H.T. Chiu, T. Sukachonmakul, C.H. Wang, K. Wattanakul, M.T. Guo and Y.H. Wang, Surface Modification of Aluminum Nitride by Polysilazane and its Polymer-derived Amorphous Silicon Oxycarbide Ceramic for the Enhancement of Thermal Conductivity in Silicone Rubber Composite, Applied Surface Science, 2014, 292, 928-936.
80. J.J. Chruściel and E. Leśniak, Modification of Thermoplastics with Reactive Silanes and Siloxanes, in: El-Sonbati (Ed.), Thermoplastic Elastomers, InTech, Rijeka, 2012, pp. 155-192.
81. H. Yu, L. Li, T. Kido, G. Xi, G. Xu and F. Guo, Thermal and Insulating Properties of Epoxy/Aluminum Nitride Composites Used for Thermal Interface Material, Journal of Applied Polymer Science, 2012, 124, 669-677.
82. S. Choi, H. Im and J. Kim, The Thermal Conductivity of Embedded Nano-aluminum Nitride-doped Multi-walled Carbon Nanotubes in Epoxy Composites Containing Micro-aluminum Nitride Particles, Nanotechnology, 2012, 23, 065303.
83. H.T. Chiu, T. Sukachonmakul, C.H. Wang, K. Wattanakul, M.T. Guo and Y.H. Wang, Effect of Pyrolysis Atmospheres on the Morphology of Polymer-derived Silicon Oxynitrocarbide Ceramic Films Coated Aluminum Nitride Surface and the Thermal Conductivity of Silicone rubber composites, Applied Surface Science, 2014, 292, 319-327.
84. US pat. 6 362 279, 2006.
85. E. Bernardo, E. Tomasella and P. Colombo, Development of Multiphase Bioceramics From a Filler-containing Preceramic Polymer, Ceramics International 2009, 35, 1415-1421.
86. P. Colombo, G. Mera, R. Riedel and G.D. Soraru, Polymer-Derived Ceramics: 40 Years of Research and Innovation in Advanced Ceramics, Journal of the American Ceramic Society, 2010, 93, 1805-1837.
87. H.T. Chiu, T. Sukachonmakul, C.H. Wang, K. Wattanakul, M.T. Guo and Y.H. Wang, Fabrication and Characterization of Silicon-based Ceramic/Aluminum Nitride as Thermally Conductive Hybrid Filler in Silicone Rubber Composite, Material Chemistry and Physics, 2014, 147, 11-16.
88. Y. Li and J. Gao, Preparation of Silicon Nitride Ceramic Fibers from Polycarbosilane Fibers by γ-ray Irradiation Curing, Materials Letters, 2013, 110, 102-104.
89. C.L. Schilling, J.P. Wesson and T.C. Williams, Polycarbosilane Precursors for Silicon Carbide, Journal of Polymer Science: Polymer Symposium, 1983, 70, 121-128.
90. X. Wang, J. Wu, Y. Li, C. Zhou and C. Xu, Pyrolysis Kinetics and Pathway of Polysiloxane Conversion to an Amorphous SiOC Ceramic, Journal of Thermal Analysis and Calorimetry, 2014, 115, 55-62.
91. H.W. Bai, G. Wen, X.X. Huang, Z.X. Han, B. Zhong, Z.X. Hu and X.D. Zhang, Synthesis and Structural Characterization of SiBOC Ceramic Fibers Derived from Single-source Polyborosiloxane, Journal of the European Ceramic Society, 2011, 31, 931-940.
92. R. Richter, G. Roewer, U. Bohme, K. Busch, F. Babonneau, H.P. Martin and E. Muller, Organosilicon Polymers—Synthesis, Architecture, Reactivity and Applications, Applied Organometallic Chemistry, 1997,11,71-106.
93. W. Noll, in Chemistry and Technology of Silicones, Academic Press, New York, 1st edn., 1968.
94. W. Tian, X. Fan, Y. Liu, M. Jiang, Y. Huang and J. KONG, β-Cyclodextrin Polymer Brushes Based on Hyperbranched Polycarbosilane: Synthesis and Characterization, Journal of Polymer Science: Part A: Polymer Chemistry, 2008, 46, 5036-5022.
95. A. Lukacs, Microsilica Addition as an Antihydration Technique for Magnesia-Containing Refractory Castables, American Ceramic Society Bulletin, 2003, 86, 9301-9306.
96. S.B. Yun and Y.T. Park, Synthesis and Properties of Poly(carbomethyloctylsiloxane)s by Melt Copolymerization of Bis(diethylamino)methyloctylsilane and Aryldiol Derivatives, Bulletin Korean Chemical Society, 2008, 29, 2373-2378.
97. US pat. 5 104 636, 1992.
98. EP pat. 0 562 507 A2, 1993.
99. J.F. Jakin, R.L. Wells, J.L. Coffer, J.V. John, W.T. Pennington and G.L. Schimek, Nanocrystalline Aluminum Nitride and Aluminum/Gallium Nitride Nanocomposites via Transamination of [M(NMe2)3]2, M = Al, Al/Ga (1/1), Chemistry of Materials, 1998, 10, 1613-1622.
100. C.N. McMahon, L. Alemany, R.L. Callender, S.G. Bott and A.R. Barron, Reaction of Al(tBu)3 with Ethylene Glycol:  Intermediates to Aluminum Alkoxide (Alucone) Preceramic Polymers, Chemistry of Materials, 1999, 11, 3181-3188.
101. J. Khanderi, D. Rische, H.W. Becker and R.A. Fischer, Ligand Stabilised Dialkyl Aluminium Amides as New Precursors for Aluminium Nitride Thin Films, Journal of Materials Chemistry, 2004, 14, 3210-3214.
102. X. He, G. Li, H. Liu, J. Li and Z. Zhu, Thermal Behavior of Alumina Microfibers Precursor Prepared by Surfactant Assisted Microwave Hydrothermal, Journal of the American Ceramic Society, 2012, 95, 3638-3642.
103. US pat. 4 581 468, 1986.
104. R. Shetty and W.R. Wilcox, Boron Nitride Coating on Fused Silica Ampoules for Semiconductor Crystal Growth, Journal of Crystal Growth, 1995, 153, 97-102.
105. C.K. Narula, P. Czubarow and D. Seyferth, Poly(borazinylamine): An Excellent Precursor for the Preparation of Low Volume Fraction Metal-matrix Composites Containing Metal Borides and Nitrides as Ceramic Phase, Journal of Materials Science, 1998, 33, 1389-1397.
106. C. Gervais and F. Babonneau, High Resolution Solid State NMR Investigation of Various Boron Nitride Preceramic Polymers, Journal of Organometallic Chemistry, 2002, 657, 75-82.
107. J.K. Jeon, C. Gervais, F. Babonneau and D.P. Kim, Phase Evolution of an Al-B-N Nanocomposite Prepared from a Preceramic Polymer Mixture, Journol of Industrial and Engineering Chemistry, 2004, 10(5), 717-721.
108. M.M. Guron, X. Wei, D. Welna, N. Krogman, M.J. Kim, H. Allcock and L.G. Sneddon, Preceramic Polymer Blends as Precursors for Boron-Carbide/Silicon-Carbide Composite Ceramics and Ceramic Fibers, Chemitry of Materials, 2009, 21, 1708-1715.
109. C.R. Kruger and E.G. Rochow, Polyorganosilazanes, Journal of Polymer Science: Part A, 1964, 2, 3179-3189.
110. E. Kroke, Y.L. Li, C. Konetschny, E. Lecomte, C. Fasel and R. Riedel, Silazane Derived Ceramics and Related Materials, Materials Science and Engineering: R, 2000, 26, 97-199.
111. K. Ruhlandt-Senge, R.A. Barlett, M.M. Olmstead and P.P. Power, Silylamines with Pyramidal Coordination at Nitrogen, Angewandte Chemie International Edition, 1993, 32, 425-427.
112. R.C. Osthoff and S.W. Kantor, Inorganic Syntheses, in: T. Moeller (Eds), McGraw-Hill, New York, 1957, pp. 58.
113. J. He, M. Scarlete and J.F. Harrod, Silicon Nitride and Silicon Carbonitride by the Pyrolysis of Poly(methylsiladiazane), Journal of the American Ceramic Society, 1995, 78, 3009-3017.
114. H.G. Ruyken and K. Schaarschmidt, Chemical Technology, 1959, 11, 451.
115. US pat. 6 329 487, 2001.
116. R. Chavez, E. Ionescu, C. Balan, C. Fasel and R. Riedel, Effect of Ambient Atmosphere on Crosslinking of Polysilazanes, Journal of Applied Polymer Science, 2011, 119, 794-802.
117. N.S. Choong Kwet Yive, R.J.P. Corriu, D. Leclercq, P.H. Mutin and A. Vioux, Silicon Carbonitride from Polymeric Precursors: Thermal Cross-linking and Pyrolysis of Oligosilazane Model Compounds, Chemistry of Materials, 1992, 4, 141-146.
118. A. Lavedrine, D. Bahloul and P. Goursat, Pyrolysis of Polyvinylsilazane Precursors to Silicon Carbonitride, Journal of the European Ceramic Society, 1991, 8, 221-227.
119. M.A. Shayed, R.D. Hund and C. Cherif, Polysilazane-based Heat- and Oxidation-resistant Coatings on Carbon Fibers, Journal of Applied Polymer Science, 2012, 124, 2022-2029.
120. http://www.durazane.com/wp-content/uploads/2013/11/Durazane-Leaflet-EN.pdf
121. Clarient polysilazane
122. US pat. 0 006 403 A1, 2012.
123. www.kiondefense.com/bulletins/TB1.pdf‎
124. B. Gardelle, S. Duquesne, C. Vu and S. Bourbigot, Thermal Degradation and Fire Performance of Polysilazane-based Coatings, Thermochimica Acta, 2011, 519, 28-37.
125. J. Wan, M.J. Gasch and A.K. Mukherjee, Effect of Ammonia Treatment on the Crystallization of Amorphous Silicon–Carbon–Nitrogen Ceramics Derived from Polymer Precursor Pyrolysis, Journal of the American Ceramic Society, 2002, 85, 554-564.
126. H.J. Kleebe, D. Suttor, H. Muller and G. Ziegler, Decomposition-Crystallization of Polymer-Derived Si-C-N Ceramics, Journal of the American Ceramic Society, 1998, 81, 2971-2977.
127. A. Kojima, S. Hoshii and T. Muto, Characteristics of Polysilazane Compound and its Application as Coating for Carbon Material, Journal of Materials Science Letters, 2002, 21, 757-760.
128. R. Haug, M. Weinmann, J. Bill and F. Aldinger, Plastic Forming of Preceramic Polymers, Journal of European Ceramic Society, 1999, 19, 1-6.
129. C. Konetschny, D. Galusek, S. Reschke, C. Fasel and R. Riedel, Dense Silicon Carbonitride Ceramics by Pyrolysis of Cross-linked and Warm Pressed Polysilazane Powders, Journal of European Ceramic Society, 1999, 19, 2789-2796.
130. M. Shibuya, M. Sakurai and T. Takahashi, Preparation and Characteristics of a Vapor-grown Carbon Fiber/Ceramic Composite Using a Methylsilicone Precursor, Composites Science and Technology, 2007, 67, 3338-3344.
131. E. Breval, M. Hammond and C.G. Pantano, Nanostructural Characterization of Silicon Oxycarbide Glasses and Glass-Ceramics, Journal of the American Ceramic Society, 1994, 77, 3012-3018.
132. M. Esfehanian, R. Oberacker, T. Fett and M.J. Hoffmann, Development of Dense Filler-Free Polymer-Derived SiOC Ceramics by Field-Assisted Sintering, Journal of the American Ceramic Society, 2008, 91, 3803-3805.

Reference Chapter 3
1. W. Zhou, D. Yu, C. Wang, Q. An and S. Qi, Effect of Filler Size Distribution on the Mechanical and Physical Properties of Alumina-filled Silicone Rubber, Polymer Engineering and Science, 2008, 48, 1381-1388.
2. L.C. Sim, S.R. Ramanan, H. Ismail, K.N. Seetharamu and T.J. Goh, Thermal Characterization of Al2O3 and ZnO Reinforced Silicone Rubber as Thermal Pads for Heat Dissipation Purposes, Thermochimica Acta, 2005, 430, 155-165.
3. R. Prasher, Thermal Interface Materials: Historical Perspective, Status, and Future Directions, Proceedings of the IEEE, 2006, 94, 1571-1586.
4. E.S. Lee, S.M. Lee, D.J. Shanefield and W.R. Cannon, Enhanced Thermal Conductivity of Polymer Matrix Composite via High Solids Loading of Aluminum Nitride in Epoxy Resin, Journal of the American Ceramic Society, 2008, 91, 1169-1174.
5. Y. Xu, D.D.L. Chung and C. Mroz, Thermally Conducting Aluminum Nitride Polymer-matrix Composites, Composites Part A, 2001, 32, 1749-1757.
6. A.F. Junior and D.J. Shanafield, Thermal Conductivity of Polycrystalline Aluminum Nitride (AlN) Ceramics, Ceramica, 2004, 50, 247-253.
7. M. Ohashi, S. Kawakami and Y. Yokagawa, Spherical Aluminum Nitride Fillers for Heat-conducting Plastic Packages, Journal of the American Ceramic Society, 2005, 88, 2615-2618.
8. H. Yu, L. Li, T. Kido, G. Xi, G. Xu and F. Guo, Thermal and Insulating Properties of Epoxy/Aluminum Nitride Composites Used for Thermal Interface Material, Journal of Applied Polymer Science, 2012, 124, 669-677.
9. W. Zhou, S. Qi, C. Tu, H. Zhao, C. Wang and J. Kou, Effect of the Particle Size of Al2O3 on the Properties of Filled Heat-Conductive Silicone Rubber, Journal of Applied Polymer Science, 2007, 104, 1312-1318.
10. Y. Liu, L Q. Zhang, W.C. Wang, H.T. Yu and Y.L. Lu, Preparation of Polydimethylsiloxane-coated -Alumina Fillers with Cold Plasma for Elastomer Thermal Interface Materials, Journal of Applied Polymer Science, 2012, 123, 2875-2882.
11. US pat. 7 094 822, 2004.
12. Q. Mu, S. Feng and G. Diao, Thermal Conductivity of Silicone Rubber Filled with ZnO, Polymer Composites, 2007, 28, 125-130.
13. Y. Han, S. Lv, C. Hao, F. Ding and Y. Zhang, Thermal Conductivity of Silicone Rubber Filled with ZnO, Thermochimica Acta, 2012, 529, 68-73.
14. K. Wattanakul, H. Manuspiya and N. Yanumet, Effective Surface Treatments for Enhancing the Thermal Conductivity of BN-filled Epoxy Composite, Journal of Applied Polymer Science, 2011, 119, 3234-3243.
15. X. Huang, T. Iizuka, P. Jiang, Y. Ohki and T. Tanaka, Role of Interface on the Thermal Conductivity of Highly Filled Dielectric Epoxy/AlN Composites, Journal of Physical Chemistry C, 2012, 116, 13629-13639.
16. W. Zhou and D. Yu, Thermal and Dielectric Properties of the Aluminum Particle/Epoxy Resin Composites, Journal of Applied Polymer Science, 2010, 118, 3156-3166.
17. A.K. Roy, B.L. Farmer, V. Varshney, S. Sihn, J. Lee and S. Ganguli, Thermal and Dielectric Properties of the Aluminum Particle/Epoxy Resin Composites, ACS Applied Materials & Interfaces, 2012, 4, 45-563.
18. J.J. Chruściel, E. Leśniak, Modification of Thermoplastics with Reactive Silanes and Siloxanes, in: El-Sonbati (Ed.), Thermoplastic Elastomers, InTech, Rijeka, 2012, pp. 155-192.
19. A. Lukacs, Microsilica Addition as an Antihydration Technique for Magnesia-Containing Refractory Castables, American Ceramic Society Bulletin, 2003, 86, 9301-9306.
20. M.A. Shayed, C. Cherif, R.D. Hund and T. Cheng, Carbon and Glass Fibers Modified by Polysilazane Based Thermal Resistant Coating, Textile Research Journal, 2010, 80, 1118-1128.
21. S. Sarkar, J. Zou, J. Liu, C. Xu, L. An and L. Zhai, Carbon and Glass Fibers Modified by Polysilazane Based Thermal Resistant Coating, ACS Applied Materials & Interfaces, 2010, 2, 1150-1156.
22. R. Bhandavat and G. Singh, Polymer-derived Ceramic Composite Fibers with Aligned Pristine Multiwalled Carbon Nanotubes, ACS Applied Materials & Interfaces, 2012, 4, 5092-5097.
23. E. Ponthieu, P. Grange, B. Delmon, L. Lonnoy, L. Leclercq, R. Bechara and J. Grimblot, Proposal of a Composition Model for Commercial AlN Powders, Journal of the European Ceramic Society, 1991, 8, 233-241.
24. R. Anderson, B. Arkles and L. Larson, in Silicon Compounds Register and Review, first ed., Petrarch Systems, Bristol, 1987.
25. P.W. Wang, J.C. Hsu, Y.H. Lin and H.L. Chen, Structural Investigation of High-transmittance Aluminum Oxynitride Films Deposited by Ion Beam Sputtering, Surface and Interface Analysis, 2010, 43, 1089-1094.
26. D. Manova, V. Dimitrova, W. Fukarek and D. Karpuzov, Investigation of D.C.-reactive Magnetron-sputtered AlN Thin Films by Electron Microprobe Analysis, X-ray Photoelectron Spectroscopy and Polarised Infra-red Reflection, Surface and Coatings Technology, 1998, 106, 205-208.
27. L. Rosenberger, R. Baird, E. McCullen, G. Auner and G. Shreve, XPS Analysis of Aluminum Nitride Films Deposited by Plasma Source Molecular Beam Epitaxy, Surface and Interface Analysis, 2008, 40, 1254-1261.
28. J. Bermudo, M.I. Osendi and J.L.G. Fierro, Oxygen Distribution in AlN, Si3N4 Powders as Revealed by Chemical and Spectroscopy Techniques, Ceramics International, 2000, 26, 141-146.
29. A. Azioune, M. Marcozzi, V. Revello, J.J. Pireaux, Deposition of Polysiloxane-like Nanofilms onto an Aluminium Alloy by Plasma Polymerized Hexamethyldisiloxane: Characterization by XPS and Contact Angle Measurements, Surface and Interface Analysis, 2007, 39, 615-623.
30. A.D. Katnani and K.I. Papathomas, Kinetics and Initial Stages of Oxidation of Aluminum Nitride: Thermogravimetric Analysis and X-ray Photoelectron Spec- troscopy Study, Journal of Vacuum Science & Technology A, 1987, 5, 1335-1340.
31. A. Maghsoudipour, F. Moztarzadeh, M. Saremi and J.G. Heinrich, Oxidation Behavior of AlN–Al2O3 Composites, Ceramics International, 2004, 30, 773-783.
32. P.W. Wang, J.C. Hsu, Y.H. Lin and H.L. Chen, Nitrogen Bonding in Aluminum Oxynitride Films, Applied Surface Science, 2010, 256, 4211-4214.
33. J.F. Watts and J. Wolstenholme, An Introduction to Surface Analysis by XPS and AES, first ed., Wiley, Chichester, 2003.
34. C.Y. Kim, R. Navamathavan, H.S. Lee, J.K. Woo, M.T. Hyun, K.M. Lee, W.Y. Jeung and C. K. Choi, Ultraviolet Irradiation Effect on the Properties of Leakage Current and Dielectric Breakdown of Low-dielectric-constant SiOC(H) Films Using Comb Capacitor Structure, Thin Solid Films, 2011, 519, 6732-6736.
35. S. Naskar, S.D. Wolter, C.A. Bower, B.R. Stoner and J.T. Glass, Verification of the O–Si–N Complex in Plasma-enhanced Chemical Vapor Deposition Silicon Oxynitride Films, Applied Physics Letters, 2005, 87, 261907.
36. Z.W. Deng and R. Souda, XPS Studies on Silicon Carbonitride Films Prepared by Sequential Implantation of Nitrogen and Carbon into Silicon, Diamond and Related Materials, 2002, 11, 1676-1682.
37. F. Tenegal, A.G. Rocque, G. Dufour, C. Senemaud, B. Doucey, D.B. Hourlier, P. Goursat, M. Mayne and M. Cauchetier, Journal of Electron Spectroscopy and Related Phenomena, 2000, 109, 241-248.
38. J. Bill, J. Seitz, G. Thurn, J. Durr, J. Canel, B.Z. Janos, A. Jalowiecki, D. Saster, S. Schempp, H.P. Lamparter, J. Mayer and F. Aldinger, Structure Analysis and Properties of Si–C–N Ceramics Derived from Polysilazanes, Physica Status Solidi (A) 1998, 166, 269-296.
39. M.A. Auger, L. Vazquez, M. Jergel, O. Sanchez and J.M. Albella, Structure and Morphology Evolution of AlN Films Grown by DC Sputtering, Surface and Coatings Technology, 2004, 180, 140-144.
40. A. Kojima, S. Hoshii and T. Muto, Characteristics of Polysilazane Compound and its Application as Coating for Carbon Material, Journal of Materials Science Letters, 2002, 21, 757-760.
41. P.E. Hopkins, L.M. Phinney, J.R. Serrano and T.E. Beechem, Effects of Surface Roughness and Oxide Layer on the Thermal Boundary Conductance at Aluminum/Silicon Interfaces, Physics Letters B, 2010, 82, 085307.
42. Z.X. Jiang, L.H. Meng, Y.D. Huang, L. Liu and C. Lu, Influence of Coupling Agent Chain Lengths on Interfacial Performances of Polyarylacetylene Resin and Silica Glass Composites, Applied Surface Science, 2007, 253, 4338-4343.
43. E. Kroke, Y.L. Li, C. Konetschny, E. Lecomte, C. Fasel and R. Riedel, Silazane Derived Ceramics and Related Materials, Materials Science and Engineering: R, 2000, 26, 97-199.
44. E. Ionescu and R. Riedel, Polymer processing of ceramics, in: N.P. Bansal, A.R. Boccaccini (Eds.), Ceramics and Composites Processing Methods Wiley-American Ceramic Society, New Jersey, 2012, pp. 235-270.
45. W.D. Callister, Materials Science and Engineering: An Introduction, seventh ed., Wiley, New York, 2007.
46. K. Wattanakul, H. Manuspiya and N. Yanumet, Thermal Conductivity and Mechanical Properties of BN-filled Epoxy Composite: Effects of Filler Content, mixing conditions, and BN agglomerate size, Journal of Composite Materials, 2011, 45, 1967-1980.
47. A. Shayed, R.D. Hund and C. Cherif, Polysilazane-based heat- and Oxidation- resistant Coatings on Carbon Fibers, Journal of Applied Polymer Science, 2011, 124, 2022-2029.
48. B. Gardelle, S. Duquesne, C. Vu and S. Bourbigot, Thermal Degradation and Fire Performance of Polysilazane-based Coatings, Thermochimica Acta, 2011, 519, 28-37.
49. H. Kozuka, M. Fujita and S. Tamoto, Polysilazane as the Source of Silica: the Formation of Dense Silica Coatings at Room Temperature and the New Route to Organic–inorganic Hybrids, Journal of Sol-Gel Science and Technology, 2008, 48, 148-155.

Reference Chapter 4
1. W. Peng, X. Huang, J. Yu, P. Jiang and W. Liu, Electrical and Thermophysical Properties of Epoxy/Aluminum Nitride Nanocomposites: Effects of Nanoparticle Surface Modification, Composites Part A, 2010, 41, 1201-1209.
2. W. Zhou, S. Qi, C. Tu, H. Zhao, C. Wang and J. Kou, Effect of The Particle Size of Al2O3 on the Properties of Filled Heat-Conductive Silicone Rubber, Journal of Applied Polymer Science, 2007, 104, 1312-1318.
3. K. Wattanakul, H. Manuspiya and N. Yanumet, Effective Surface Treatments for Enhancing the Thermal Conductivity of BN-filled Epoxy Composite, Journal of Applied Polymer Science, 2011, 119, 3234-3243.
4. Y. Xu, D.D.L. Chung and C. Mroz, Thermally Conducting Aluminum Nitride Polymer-matrix Composites, Composites Part A, 2001, 32, 1749-1757.
5. Mechanism of Nano-SiC/DGEBA/EMI-2,4 Composites, Polymer 2008, 49, 4666-4672.
6. H. He, R. Fu, Y. Han, Y. Shen and X. Song, Thermal Conductivity of Ceramic Particle Filled Polymer Composites and Theoretical Predictions, Journal of Materials Science, 2007, 42, 6749-6754.
7. W. Zhou, C. Wang, Q. An and H. Ou, Thermal Properties of Heat Conductive Silicone Rubber Filled with Hybrid Fillers, Journal of Composite Materials, 2008, 42, 173-187.
8. S. Choi, H. Im and J. Kim, The Thermal Conductivity of Embedded Nano-aluminum Nitride-doped Multi-walled Carbon Nanotubes in Epoxy Composites Containing Micro-aluminum Nitride Particles, Nanotechnology, 2012, 23, 065303.
9. G.W. Lee, M. Park, J. Kim, J.I. Lee and H.G. Yoon, Enhanced Thermal Conductivity of Polymer Composites Filled with Hybrid Filler, Composites Part A, 2006, 37, 727-734.
10. K. Yang and M. Gu, Enhanced Thermal Conductivity of Epoxy Nanocomposites Filled with Hybrid Filler System of Triethylenetetramine-functionalized Multi-walled Carbon Nanotube/Silane-modified Nano-sized Silicon Carbide, Composites Part A, 2010, 41, 215-221.
11. K. Wattanakul, H. Manuspiya and N. Yanumet, Thermal Conductivity and Mechanical Properties of BN-filled Epoxy Composite: Effects of Filler Content, mixing conditions, and BN agglomerate size, Journal of Composite Materials, 2011, 45, 1967-1980.
12. C.Y. Hsieh and S.L. Chung, High Thermal Conductivity Epoxy Molding Compound Filled with a Combustion Synthesized AlN Powder, Journal of Applied Polymer Science, 2006, 102, 4734-4740.
13. Y. Han, S. Lv, C. Hao, F. Ding and Y. Zhang, Thermal Conductivity of Silicone Rubber Filled with ZnO, Thermochimica Acta, 2012, 529, 68-73.
14. W. Zhou and D. Yu, Thermal and Dielectric Properties of the Aluminum Particle/Epoxy Resin Composites, Journal of Applied Polymer Science, 2010, 118, 3156-3166.
15. M.A. Shayed, C. Cherif, R.D. Hund and T. Cheng, Carbon and Glass Fibers Modified by Polysilazane Based Thermal Resistant Coating, Textile Research Journal, 2010, 80, 1118-1128.
16. J.J. Chruściel, E. Leśniak, Modification of Thermoplastics with Reactive Silanes and Siloxanes, in: El-Sonbati (Ed.), Thermoplastic Elastomers, InTech, Rijeka, 2012, pp. 155-192.
17. A. Lukacs, Microsilica Addition as an Antihydration Technique for Magnesia-Containing Refractory Castables, American Ceramic Society Bulletin, 2003, 86, 9301-9306.
18. S. Sarkar, J. Zou, J. Liu, C. Xu, L. An and L. Zhai, Carbon and Glass Fibers Modified by Polysilazane Based Thermal Resistant Coating, ACS Applied Materials & Interfaces, 2010, 2, 1150-1156.
19. R. Bhandavat and G. Singh, Polymer-derived Ceramic Composite Fibers with Aligned Pristine Multiwalled Carbon Nanotubes, Applied Materials & Interfaces, 2012, 4, 5092-5097.
20. E. Ponthieu, P. Grange, B. Delmon, L. Lonnoy, L. Leclercq, R. Bechara and J. Grimblot, Proposal of a Composition Model for Commercial AlN Powders, Journal of the European Ceramic Society, 1991, 8, 233-241.
21. R. Anderson, B. Arkles, L. Larson, in Silicon Compounds Register and Review, first ed., Petrarch Systems, Bristol, 1987.
22. M. Halamka, Š. Kavecky, B. Dočekal, J. Madejova, P. Šajgalik, Synthesis of High Purity Si3N4 and SiC Powders by CVD Method, Ceramics-Silikaty, 2003, 47, 88-93.
23. B. Gardelle, S. Duquesne, C. Vu and S. Bourbigot, Thermal Degradation and Fire Performance of Polysilazane-based Coatings, Thermochimica Acta, 2011, 519, 28-37.
24. J. Bill, J. Seitz, G. Thurn, J. Durr, J. Canel, B.Z. Janos, A. Jalowiecki, D. Saster, S. Schempp, H.P. Lamparter, J. Mayer and F. Aldinger, Structure Analysis and Properties of Si–C–N Ceramics Derived from Polysilazanes, Physica Status Solidi (A) 1998, 166, 269-296.
25. H.T. Chiu, T. Sukachonmakul, C.H. Wang, K. Wattanakul, M.T. Guo and Y.H. Wang, Surface Modification of Aluminum Nitride by Polysilazane and its Polymer-derived Amorphous Silicon Oxycarbide Ceramic for the Enhancement of Thermal Conductivity in Silicone Rubber Composite, Applied Surface Science, 2014, 292, 928-936.
26. M.A. Auger, L. Vazquez, M. Jergel, O. Sanchez and J.M. Albella, Structure and Morphology Evolution of AlN Films Grown by DC Sputtering, Surface and Coatings Technology, 2004, 180, 140-144.
27. Z.W. Deng and R. Souda, XPS Studies on Silicon Carbonitride Films Prepared by Sequential Implantation of Nitrogen and Carbon into Silicon, Diamond and Related Materials, 2002, 11, 1676-1682.
28. S. Naskar, S.D. Wolter, C.A. Bower, B.R. Stoner and J.T. Glass, Verification of the O–Si–N Complex in Plasma-enhanced Chemical Vapor Deposition Silicon Oxynitride Films, Applied Physics Letters, 2005, 87, 261907.
29. C.Y. Kim, R. Navamathavan, H.S. Lee, J.K. Woo, M.T. Hyun, K.M. Lee, W.Y. Jeung and C. K. Choi, Ultraviolet Irradiation Effect on the Properties of Leakage Current and Dielectric Breakdown of Low-dielectric-constant SiOC(H) Films Using Comb Capacitor Structure, Thin Solid Films, 2011, 519, 6732-6736.
30. F. Tenegal, A.G. Rocque, G. Dufour, C. Senemaud, B. Doucey, D.B. Hourlier, P. Goursat, M. Mayne and M. Cauchetier, Journal of Electron Spectroscopy and Related Phenomena, 2000, 109, 241-248.
31. J. Wan, M.J. Gasch and A.K. Mukherjee, Effect of Ammonia Treatment on the Crystallization of Amorphous Silicon–Carbon–Nitrogen Ceramics Derived from Polymer Precursor Pyrolysis, Journal of the American Ceramic Society, 2002, 85, 554-564.
32. K. Szaniawska, L. Murawski, R. Pastuszak, M. Walewski and G. Fantozzi, Nitridation and Densification of SiO2 Aerogels, Journal of Non-Crystalline Solids, 2001, 286, 58-63.
33. K. Wattanakul, H. Manuspiya and N. Yanumet, Effective Surface Treatments for Enhancing the Thermal Conductivity of BN-filled Epoxy Composite, Journal of Applied Polymer Science, 2011, 119, 3234-3243.
34. E. Kroke, Y.L. Li, C. Konetschny, E. Lecomte, C. Fasel and R. Riedel, Silazane Derived Ceramics and Related Materials, Materials Science and Engineering: R, 2000, 26, 97-199.
35. E. Ionescu and R. Riedel, Polymer processing of ceramics, in: N.P. Bansal, A.R. Boccaccini (Eds.), Ceramics and Composites Processing Methods Wiley-American Ceramic Society, New Jersey, 2012, pp. 235-270.
36. P.E. Hopkins, L.M. Phinney, J.R. Serrano and T.E. Beechem, Effects of Surface Roughness and Oxide Layer on the Thermal Boundary Conductance at Aluminum/Silicon Interfaces, Physics Letters B, 2010, 82, 085307.

Reference Chapter 5
1. L.C. Sim, S.R. Ramanan, H. Ismail, K.N. Seetharamu and T.J. Goh, Thermal Characterization of Al2O3 and ZnO Reinforced Silicone Rubber as Thermal Pads for Heat Dissipation Purposes, Thermochimica Acta, 2005, 430, 155-165.
2. E.S. Lee, S.M. Lee, D.J. Shanefield and W.R. Cannon, Enhanced thermal conductivity of polymer matrix composite via high solids loading of aluminum nitride in epoxy resin, Journal of the American Ceramic Society, 2008, 91, 1169-1174.
3. B. Lee, J.Z. Liu, B. Sun, C.Y. Shen and G.C. Dai, Thermally Conductive and Electrically Insulating EVA Composite Encapsulants for Solar Photovoltaic (PV) Cell, Express Polymer Letters, 2008, 2, 357-363.
4. US pat. 0 307 501, 2012.
5. EP pat. 2 597 120, 2013.
6. C.C. Teng, C.C.M. Ma, K.C. Chiou, T.M. Lee and Y.F. Shih, Synergetic Effect of Hybrid Boron Nitride and Multi-walled Carbon Nanotubes on the Thermal Conductivity of Epoxy Composites, Materials Chemistry and Physics, 2011, 126, 722-728.
7. H.B. Lu, J.H. Gou, J.S. Leng and S.Y. Du, Synergistic Effect of Carbon Nanofiber and Sub-micro Filamentary Nickel Nanostrand on the Shape Memory Polymer Nanocomposite, Smart Materials and Structures, 2011, 20, 035017.
8. H.B. Lu and W.M. Huang, Synergistic Effect of Self-assembled Carboxylic Acid-functionalized Carbon Nanotubes and Carbon Fiber for Improved Electro-activated Polymeric Shape-memory Nanocomposite, Applied Physics Letters, 2013, 102, 231910.
9. A. Lukacs, Microsilica Addition as an Antihydration Technique for Magnesia-Containing Refractory Castables, American Ceramic Society Bulletin, 2003, 86, 9301-9306.
10. M.A. Shayed, C. Cherif, R.D. Hund and T. Cheng, Carbon and Glass Fibers Modified by Polysilazane Based Thermal Resistant Coating, Textile Research Journal, 2010, 80, 1118-1128.
11. J. Wan, M.J. Gasch and A.K. Mukherjee, Effect of Ammonia Treatment on the Crystallization of Amorphous Silicon–Carbon–Nitrogen Ceramics Derived from Polymer Precursor Pyrolysis, Journal of the American Ceramic Society, 2002, 85, 554-564.
12. E. Kroke, Y.L. Li, C. Konetschny, E. Lecomte, C. Fasel and R. Riedel, Silazane Derived Ceramics and Related Materials, Materials Science and Engineering: R, 2000, 26, 97-199.
13. A. Maghsoudipour, F. Moztarzadeh, M. Saremi and J.G. Heinrich, Oxidation Behavior of AlN–Al2O3 Composites, Ceramics International, 2004, 30, 773-783.
14. X. Zhang, Y. Chen, Z. Xie and W. Yang, Shape and Doping Enhanced Field Emission Properties of Quasialigned 3C-SiC Nanowires, Journal of Physical Chemistry C, 2010, 114, 8251-8255.
15. H.J. Kleebe, D. Suttor, H. Muller and G. Ziegler, Decomposition-Crystallization of Polymer-Derived Si-C-N Ceramics, Journal of the American Ceramic Society, 1998, 11, 2971-2977.
16. M.A. Auger, L. Vazquez, M. Jergel, O. Sanchez and J.M. Albella, Structure and Morphology Evolution of AlN Films Grown by DC Sputtering, Surface and Coatings Technology, 2004, 180, 140-144.
17. H. Yilmaz and H. Kacmaz, Distinguishing Opaline Silica Polymorphs from α-Cristobalite in Gedikler Bentonite, Applied Clay Science, 2012, 62, 80-86.
18. P.W. Wang, J.C. Hsu, Y.H. Lin and H.L. Chen, Structural Investigation of High-transmittance Aluminum Oxynitride Films Deposited by Ion Beam Sputtering, Surface and Interface Analysis, 2010, 43, 1089-1094.
19. M.E. Galvez, A. Frei, F. Meier and A. Steinfeld, Production of AlN by Carbothermal and Methanothermal Reduction of Al2O3 in a N2 Flow Using Concentrated Thermal Radiation, Industrial & Engineering Chemistry Research, 2009, 48, 528-533.
20. J.W. He, X. Xu, J.S. Corneille and D.W. Goodman, X-ray Photoelectron Spectroscopic Characterization of Ultra-thin Silicon Oxide Films on a Mo(100) Surface, Surface Science, 1992, 279, 119-126.
21. R.J. Iwanowski, K. Fronc, W. Paszkowicz and M. Heinonen, XPS and XRD Study of Crystalline 3C-SiC Grown by Sublimation method, Journal of Alloys and Compounds, 1999, 286, 143-147.
22. H.L. Zhu, F.D. Han, J.Q. Bi, Y.J. Bai, Y.X. Qi, L.L. Pang, C.G. Wang, S.J. Li and C.W. Lu, Facile Synthesis of Si3N4 Nanocrystals via an Organic–inorganic Reaction Route, Journal of the American Ceramic Society, 2009, 92, 535-538.
23. H.T. Chiu, T. Sukachonmakul, C.H. Wang, K. Wattanakul, M.T. Guo and Y.H. Wang, Surface Modification of Aluminum Nitride by Polysilazane and its Polymer-derived Amorphous Silicon Oxycarbide Ceramic for the Enhancement of Thermal Conductivity in Silicone Rubber Composite, Applied Surface Science, 2014, 292, 928-936.
24. W. Zhou, C. Wang, Q. An and H. Ou, Thermal Properties of Heat Conductive Silicone Rubber Filled with Hybrid Fillers, Journal of Composite Materials, 42, 2008, 173-187.

QR CODE