簡易檢索 / 詳目顯示

研究生: 王美崴
Mei-Wei Wang
論文名稱: 雙零件系統個別與群體置換之比較
Comparisons of Individual and Group Replacement Policies for Two-Component Systems
指導教授: 葉瑞徽
Ruey-Huei Yeh
口試委員: 林希偉
Shi-Woei Lin
張文亮
Wen-Liang Chang
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業管理系
Department of Industrial Management
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 100
中文關鍵詞: 雙零件並聯系統串聯系統小修置換時程
外文關鍵詞: Two-component, Parallel system, Series system, Replacement, Minimal repair
相關次數: 點閱:352下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

製造商為了滿足市場上消費者對於產品多樣化的選擇,必須不斷研發設計新產品,在研發過程中當然必須考慮到製造程序,在製造程序中又必須加以考慮產線設備的運作狀態。因製造商常會忽略對設備進行維護作業進而導致設備無預警的停機,進而損失既有的產能外也將支出一筆龐大的設備維護費用,所以製造商必須透過設備維護計畫來降低設備失效次數以減少設備的維護費用同時可確保設備的正常運作。本論文為探討製造商產線上的系統設備為雙零件組成的系統設備,考慮雙零件組成方式為並聯與串聯系統兩種形式。雙零件組成的系統設備在運作時發生失效即以小修方式處理,為減少失效次數製造商須規劃預定置換時程進行雙零件系統置換作業,依據上述的維修置換策略,本論文分別建構出並聯與串聯系統的個別置換與群體置換成本模式,尋求雙零件系統之最佳置換時程使得期望單次更新成本率為最低,研究結果可供製造商在規劃產線上的系統設備維護保養計畫之參考依據。


In order to provide consumers with the choice of a variety of products, manufacturers must continue to develop new products. The development process must take the manufacturing process into account and consider the operational status of the production line equipment. Without a proper plan of equipment maintenance, it may cause the unexpected shutdowns of the production line and spend the extra maintenance cost. Therefore, this thesis investigates the case when the equipment of manufacturer is a two-component system which is connected in parallel or series. The replacement policies under consideration are individual and group. When a component fails during the operation, it is rectified by a minimal repair. In order to reduce the number of failures, a scheduled replacement may be required to replace the component preventively at the pre-specified time. Under this maintenance scheme, the mathematical formula of the expected total cost rate for a two-component system is derived, and then the optimal preventive replacement policy is obtained such that the expected total disbursement cost rate is minimized. Finally, some numerical examples are given to illustrate the impact of the optimal preventive replacement on the total disbursement cost rate.

中文摘要 I ABSTRACT II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 X 第1章 緒論 1 1.1 研究動機與目的 1 1.2 研究範圍 2 1.3 研究架構 3 第2章 文獻探討 6 2.1 設備維修策略 6 2.2 設備置換策略 9 2.3 設備維修與置換策略 10 2.4 並聯及串聯系統 11 2.5 小結 12 第3章 系統描述 13 3.1 數學符號定義與模式基本假設 13 3.1.1 數學符號定義 13 3.1.2 模式基本假設 14 3.2 雙零件並聯系統之個別置換與群體置換 15 3.3 雙零件串聯系統之個別置換 17 3.4 雙零件串聯系統之群體置換 18 3.5 最佳置換策略 19 3.5.1 雙零件並聯與串聯系統個別置換之最佳置換時程 19 3.5.2 雙零件並聯與串聯系統群體置換之最佳置換時程 25 3.6 演算法 28 第4章 數值分析 30 4.1 參數設定說明 30 4.2 雙零件並聯系統的最佳置換策略 31 4.3 雙零件串聯系統的最佳置換策略 34 4.4 雙零件並聯系統的最佳置換策略 36 4.5 雙零件串聯系統的最佳置換策略 39 4.6 雙零件系統之參數敏感度分析 41 4.6.1 平均壽命相近 的參數敏感度分析 42 4.6.2 平均壽命差異大 的參數敏感度分析 52 第5章 結論 62 5.1 結論 62 5.2 未來研究與建議 63 參考文獻 64 附錄 68

[1] 賴明材,「隨機過程方法應用於系統最佳置換策略之研究」,國立清華大學工業工程研究所博士論文,1989。
[2] 葉瑞徽,「產品保證對最佳維修策略之影響」,國科會研究計畫NSC-91-2213-E-011-091, 2002。
[3] 陳明郁,「產品保證對可維修產品維修策略的影響」,國立台灣科技大學工業管理系博士論文,2004。
[4] 林貞儀,「免費小修對產品年齡置換策略的影響」,國立台灣科技大學工業管理系碩士論文,2004。
[5] 謝炎璋,「應用基因演算法於退化特性串聯機械系統之最佳維護排程計畫-以造紙廠設備為例」,國立高雄第一科技大學機械與自動化研究所碩士論文,2004。
[6] 邱惠筠,「多組件系統之機會性置換策略」,元智大學工業工程與管理學系碩士論文,2007。
[7] Barlow, R. E. and L. C. Hunter, “Optimum preventive maintenance policies,” Operational Research, 8-1, 90-100 (1960).
[8] Berg, M. and B. Epstein, “Comparison of age, block and failure replacement policies,” IEEE Transactions on Reliability, 27-1, 25-29 (1978).
[9] Beichelt, F., “A generalized block-replacement policy,” IEEE Transactions on Reliability, 30, 171-172 (1981).
[10] Brown, M. and F. Proschan, “Imperfect repair,” Journal of Applied Probability, 20, 851-859 (1983).
[11] Bai, D. S. and W. Y. Yun, “An age replacement policy with minimal repair cost limit,” IEEE Transactions on Reliability, 35, 452-454 (1986).
[12] Bartholomew-Biggs, M., M. J. Zuo and X. H. Li, “Modelling and optimizing sequential imperfect preventive maintenance,” Reliability Engineering and System Safety, 94, 53-62 (2009).
[13] Chun, Y. H., “Optimal number of periodic preventive maintenance operations under warranty,” Reliability Engineering and System Safety, 37, 223-225 (1992)
[14] Chan, J. K. and L. Shaw, “Modeling repairable systems with failure rates that depend on age and maintenance,” IEEE Transactions on Reliability, 42, 566-571 (1993).
[15] Chen, M. and R. M. Feldman, “Optimal replacement policies with minimal repair and age-dependent costs,” European Journal of Operational Research, 98, 75-84 (1997).
[16] Chien, Y. H. and S. H. Sheu, “Extended optimal age-replacement policy with minimal repair of a system subject to shocks,” European Journal of Operational Research, 174-1, 169-181 (2006).
[17] Chang. C. C., S. H. Sheu, and Y. L. Chen, “Optimal replacement model with age-dependent failure type based on a cumulative repair-cost limit policy,” Applied Mathematical Modeling, 37, 308-317 (2013).
[18] Elwany. A. H, Gebraeel. N. Z, and Maillart. L. M, “Structured replacement policies for components with complex degradation process and dedicated sensors,” OperationsResearch, 59, 684-695 (2011)
[19] Jack, N. and J. S. Dagpunar, “ An optimal imperfect maintenance policy over a warranty period,” Microelectronics and reliability, 34, 529-534, (1994).
[20] Makiš, V. and A. K. S. Jardine, “Optimal replacement of a system with imperfect repair,” Microelectronics Reliability, 31, 381-388 (1991).
[21] Shafiee, M. and M. Finkelstein, “An optimal age-based group maintenance policy for multi-unit degrading systems,” Reliability Engineering and System Safety, 134, 230-238 (2015).
[22] Nakagawa, T., “Imperfect preventive maintenance,” IEEE Transactions on Reliability, 28, 402 (1979).
[23] Nakagawa, T., “Modified periodic replacement with minimal repair at failure,” IEEE Transactions on Reliability, R-30, 165-168 (1981).
[24] Nakagawa, T. and M. Kowada, “Analysis of a system with minimal repair and its application to replacement policy,” European Journal of Operational Research, 12, 176-182 (1983).
[25] Nguyen, D. G. and D. N. P. Murthy, “Optimal replace-repair strategy for servicing products sold under warranty,” European Journal of Operational Research, 39, 206-212(1989).
[26] Pongpech, J. and D. N. P. Murthy, “Optimal periodic preventive maintenance policy for leased equipment,” Reliability Engineering and System Safety, 91, 772-777 (2006).
[27] Sheu, S. H., “Periodic replacement with minimal repair at failure and general random repair cost for a multi-unit system”, Microelectronics and Reliability, 31, 1019-1025, (1991).
[28] Sheu, S. H. and J. P. Jhang, “Opportunity-based age replacement policy with minimal repair,” Reliability Engineering and System Safety, 64, 339-344 (1999).
[29] Sheu, S. H. and W. S. Griffith, “Optimal age-replacement policy with age-dependent minimal-repair and random-lead time,” IEEE Transactions on Reliability, 50, 302-309 (2001).
[30] Sheu. S. H., C. C. Chang, and Y. L. Chen, “A periodic replacement model based on cumulative repair-cost limit for system subjected to shocks,” IEEE Transactions on Reliability, 59, 374-382 (2010).
[31] Sheu. S. H., C. K. Sung, T. S. Hsu, and Y. C. Chen, “Age replacement policy for a two-unit system subject to non-homogeneous pure birth shocks,” Applied Mathematical Modeling, 37, 7027-7036 (2013).
[32] Tilquin, C. and Cleroux, R., “Block replacement policies with general cost structures,” Technometrics, 17, 291-298 (1975).
[33] Wang, H. Z. and H. Pham, “Optimal age-dependent preventive maintenance policies with imperfect maintenance”, International Journal of Reliability, Quality and Safety Engineering, 3, 119-135 (1996).
[34] Wang, H. Z. and H. Pham, “A quasi renewal process and its applications in imperfect maintenance,” International Journal of Systems Science, 27, 1055-1062 (1996).
[35] Yeh, R. H. and C. H. Lo, “Optimal preventive-maintenance warranty policy for repairable products”, European Journal of Operational Research, 134, 59-69 (2001).
[36] Yeh, R. H., K. C. Kao, and W. L. Chang, “Optimal preventive maintenance policy for leased equipment using failure rate reduction,” Computers and Industrial Engineering, 57, 304-309 (2009).

QR CODE