簡易檢索 / 詳目顯示

研究生: 張仁豪
Ren-Hao Zhang
論文名稱: 利用多次翻模及模具設計開發高密度微透鏡陣列
Manufacturing And Characterization of Highly-Densed Microlens Array by Mold Design And Multiple Casting Technique
指導教授: 陳品銓
Pin-Chuan Chen
口試委員: 田維欣
Wei-Hsin Tien
曹嘉文
Chia-Wen Tsao
莊賀喬
Ho-Chiao Chuang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 142
中文關鍵詞: 微透鏡陣列可調式微透鏡晶片微流晶體片二次翻模微銑削加工
外文關鍵詞: microlens array, tunable microlens chip, microfluidic chip, double casting, micro-milling
相關次數: 點閱:392下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究目的是製作出一可利用模具設計控制膜厚之高密度微透鏡陣列,且利用微流道晶片製程以微銑削加工和翻模技術製作可調式微薄膜晶片,將此晶片做為生產微透鏡陣列之工具。
      製作方式是以微銑削製作PMMA模具且利用二次澆鑄翻模成一體成形的高密度PDMS結構,再利用此PDMS透鏡結構與與基板以lPDMS(未固化PDMS)黏合,做出一個可由液體加壓之可調式微透鏡晶片,再利用UV光固化膠翻模,製造一個凹面半球形微透鏡陣列模仁,將此UV膠模仁作為翻模之模具,最後完成球面狀的PDMS微透鏡陣列。
      本實驗製程解決的問題有:(1)同質材料(PDMS)的脫模技術;(2)透過模具設計以及lPDMS黏合PMMA模具克服先前PDMS測漏問題,精準控制PDMS微透鏡薄膜厚度;(3)以lPDMS黏合技術取代氧電漿黏合技術,增加黏合強度。
    本實驗設計了以下實驗進行測試:(1)PDMS微透鏡薄膜厚度量測,測試是否有效解決PDMS測漏問題;(2)PDMS微透鏡陣列密度改良,以填充因子(Fill Factor)來檢測高密度微透鏡陣列;(3)PDMS微透鏡陣列之高度均勻度量測。


       The major goal of this research is to fabricate a high fill factor micro-lens array which the membrane thickness controlled by mold designing. In this study, we use micro-milling and duplicated molding technique to integrate multilayers and tunable micro-lens array into a microfluidic chip for further applications.
      PDMS was poured and filled into the PMMA mold fabricated by micromilling to creat a high fill factor micro-lens chip. A complete tunable liquid-filled microlens chip was realized after the bonding of PDMS/Glass by lPDMS (uncured PDMS) method. Then, an UV glue curing was utilized to make an array of concave hemispherical micro lens which use as another mold-insert for the replication of spherical PDMS microlens array as the final result.
       Herein, we develop some techniques to solve problems related to: (1) The demolding of homogeneous material (PDMS) with the assistance of coating spray; (2) The leakage of PDMS caused by the spacing between PMMA mold-inserts by mold designing combined with lPDMS bonding to control the membrane thickness; (3) Utilizing lPDMS bonding instead of o×ygen plasma to increase the bonding strength.
      Several e×periments were carried out to verify the quality of the high fill factor microlens arrays: (1) The measurement of PDMS membrane thickness to test if whether the leakage problem was solved; (2) The calculation of the fill factor of microlens array and compare with previous study; (3) The uniformity of microlens array through the same sag heights

    摘要 I Abstract III 致謝 IV 目錄 V 圖目錄 IX 表目錄 XV 符號表 XVI 第1章 緒論 18 1.1研究背景 18 1.2研究動機與目的 20 1.3研究方法 23 1.4論文架構 27 第2章 微透鏡製程之文獻回顧 30 2.1固定式球面微透鏡相關文獻 30 2.1.1熱熔法 31 2.1.2表面張力法 32 2.1.3灰階光罩法 33 2.1.4熱擠壓法 35 2.1.5填充法 36 2.2可調焦式透鏡相關文獻 39 2.2.1液體填充式 39 2.2.2電潤溼式 43 2.2.3熱致動式 45 2.3 填充因子相關文獻 49 2.4 PDMS二次翻模相關文獻 52 第3章 微透鏡陣列製程 56 3.1 PDMS微透鏡陣列先前製程 56 3.1.1 PDMS材料介紹 57 3.2 PDMS微透鏡陣列改良製程 63 3.3 模具製程 64 3.3.1微銑削簡介 64 3.3.2晶片結構之模具設計與製造 67 3.3.3可調式微透鏡流體晶片之模具說明 67 3.3.4直徑0.5mm、陣列15×15、間距0.15mm之微透鏡PMMA底部模具 69 3.3.5直徑0.25mm、陣列29×29、間距0.1mm之微透鏡PMMA底部模具 73 3.3.6內接圓直徑1mm、每邊個數4、間距0.1mm之六邊形微透鏡PMMA底部模具 77 3.3.7內接圓直徑0.4漸進至1mm、每邊個數4之六邊形漸進式微透鏡PMMA 81 3.3.8 PMMA微透鏡陣列之一翻固定模具 85 3.3.9 PMMA微透鏡陣列之模具之上蓋 88 3.3.10 UV膠模仁翻模輔助夾具製作 91 3.4 PDMS微透鏡薄膜結構製作方式 94 3.5 晶片黏合製作 97 3.5.1lPDMS黏合 98 3.6 光固化膠模仁製作 99 3.6.1紫外光曝光特性 99 3.6.2 UV膠模仁製作 99 3.7 PDMS微透鏡陣列 102 3.7.1 PDMS微透鏡陣列製作 103 第4章 實驗設備與方法 106 4.1研究設備 106 4.1.1製程設備 106 4.1.2量測設備與軟體 110 4.2實驗方法 112 4.2.1 PDMS微透鏡薄膜厚度量測 112 4.2.2 PDMS微透鏡陣列填充因子改良 113 4.2.3 PDMS微透鏡陣列之均勻度量測 114 第5章 實驗結果與討論 116 5.1 PDMS微透鏡薄膜厚度量測結果 116 5.2 PDMS微透鏡陣列填充因子改良結果 118 5.3 PDMS微透鏡陣列之均勻度實驗結果 119 第6章 結論與未來展望 121 6.1結論 121 6.2未來展望 123 參考文獻 124 附錄A 透鏡光學特性 131 A.1 Snell’s定理 131 A.2透鏡的曲率半徑與聚焦長度 132 A.3 Surface Sag(透鏡高度) 133 附錄B UV膜仁高度均勻度量測 135 附錄C PDMS微透鏡陣列直徑均勻度量測 138

    [1] 黃士豪,連續流動式光微影製作可調變微透鏡陣列,國立臺灣海洋大學機械與機電工程研究所,2009。
    [2] T. Shiono, K. Setsune, O. Yamazaki, and K. Wasa,“Rectangular -aperturedmicro-Fresne lensarrays fabricated by electron-beam lithography,” Applied Optics, 26(3), pp. 587-591, 1987.
    [3] S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,”Applied Physics Letters, 85,pp. 1128-1130, 2004.
    [4] 網版印刷製作微透鏡陣列之最佳研究,孫弘道、王希俊、吳文和,印刷科技 第二十七卷 第二期 pp. 4966。
    [5] Z. D. Popovic, R. A. Sprague and G. A. Neville, “Technique formonolithic fabrication of microlens arrays,”Applied Optics, 27(7),pp 1281-1284, 1988.
    [6] M.-K. Wei, I.-L. Su, Y.-J. Chen, M. Chang, H.-Y. Lin and T.-C. Wu, “The influence of a microlens array on planar organic light-emitting devices,” J. Micromech. Microeng. 16,pp. 368-374, 2006.
    [7] D. M. Hartmann, O. Kibar and S. C. Esener, “Characterization of a polymer microlens fabricated by use of the hydrophobic effect”, Optics Letters, July 1 , 25(13), 2000.
    [8] C. Altman, “Microlens array fabrication via microjet printing technologies,” Workshop on Optical Fabrication Technologies, FISBA Optik, TU Delft OFT/AP3601, 2007.
    [9] S. Audran, J. Vaillant, V. Farys and F. Hirigoyen, “Grayscale lithography process study applied to zero-gap micro lenses for sub 2μm CMOS image Sensors,”Proc. of SPIE, 7639, 2010.
    [10] Y. Fan, H. Li, and I. G. Foulds, “Integrated Lenses in Polystyrene Microfluidic Devices,’’IEEE NEMS2013,Suzhou, China, April7-10, 2013.
    [11] Y. Liu, P. Zhang, Y. Deng, P. Hao, J. Fan, M. Chi, and Y. Wu, “Polymeric microlens array fabricated with PDMS mold-based hot embossing,’’Journal of Micromechanics and Microengineering, 24,pp. 8, 2014.
    [12] U. Kohler, A. E. Guber, W. Bier and M. Heckele, “Fabrication of microlenses by plasmaless isotropic etching combined with plastic moulding,’’Sensors and Actuators, 53,pp. 361-363, 1996.
    [13] S. I. Chang and J. B. Yoon, “Shape-controlled, high fill-factor microlens arrays fabricated by a 3D diffuser lithography and plastic replication method,”Optics Express, 12(25), pp. 6366-6371, 2004.
    [14] N. Chronis, L. L. Gang, K. H. Jeong, and L. P. Lee, “Tunable liquid-filled microlens array integrated with microfluidic network,’’ Optics E×press 2370, 11(19), 2003.
    [15] J. Chen, W. Wang, J. Fang and K. Varahramyan, “Variable-focusing microlens with microfluidic chip,’’Journal of micromechanics and microengineering, 14,pp. 675–680, 2004.
    [16] K.-H. Jeong, G. L. Liu, N. Chronis and P. L. Luke, “Turnable microdoublet lens array,’’ Optics Express 2494, 12(11), 2004.
    [17] R. Hongwen, D. Fox, A. P. Andrew, B. Wu, and S. T. Wu, “Tunable-focus liquid lens controlled using a servo motor,’’Optics E×press 2494, 14(18), 2006.
    [18] H. Yang, C.-Y. Yang and M.-S. Yeh, “Fabrication of miniaturized variable-focus lens using liquid filling technique,’’DTIP, Stresa, lago Maggiore : Italy , 2007.
    [19] S. W. Lee and S. L. Seung, “Focal tunable liquid lens integrated with an electromagnetic actuator,’’APPLIED PHYSICS LETTERS, 90, 2007.
    [20] H. Yu, G. Zhou, F. S. Chau, and F. Lee, “Simple Method for Fabricating Solid Microlenses With Different Focal Lengths,’’ IEEE PHOTONICS THCHNOLOGY LETTERS, 20(19), OCTOBER 1, 2008.
    [21] G.-R. ×iong, Y.-H. Han, C. Sun, L.-G. Sun, G.-Z. Han, and Z.-Z. Gu, “Liquid microlens with tunable focal length and light transmission,’’Applied Physics Letters, 92(241119), 2008.
    [22] B. Berge and J. Peseu×, “Variable focal lens controlled by an e×ternal voltage:An application of electrowetting,’’Eur. Phys. J. E 3,pp. 159-163, 2000.
    [23] C. C. Cheng and J. A. Yeh, “Dielectrically actuated liquid lens,”Optics E×press, 15, pp. 7140-7145, 2007.
    [24] K. Y. Hung, F. G. Tseng, and T. H. Liao, “Electrostatic-Force-Modulated Microaspherical Lens for Optical Pickup Head,” Journal Of Microelectrome -chanical Systems, April, 17(2), 2008.
    [25] M. Im, D. H. Kim,J. H. Lee, J. B. Yoon and Y. K. Choi, “Electrowetting on a polymer microlens array,’’Langmuir, 26,pp. 12443-12447 , 2010.
    [26] C. Li and H. Jiang, ’’Electrowetting-driven variable-focus microlens on fle×ible surfaces,’’Applied Physics Letters 100, 231105, 2012.
    [27] N. F. Borrelli, D. L. Morse, R. H. Bellman, and W. L. Morgan, “Photolytic technique for producing microlenses in photosensitive glass,”Applied Optics, 24, pp. 2520-2525, 1985.
    [28] 童璽文,熱致動式固態可調焦微透鏡,國立清華大學動力機械工程研究所,2005。
    [29] W. Wang, J. Fang and K. Varahramyan, “ Auto-tunable Microlens Chip for Sensing Applications,’’ IEEE, pp. 519-522, 2005.
    [30] 林哲煒,新式微透鏡模仁製程之開發,逢甲大學自動控制工程學系研究所,2007。
    [31] S. S. Hsu, H. Yang and J. S. Hsu, "High Fill-factor Microlens Array Fabrication Using Pro×imity Printing with the Microlens Array Mask," 2010.
    [32] Y. S. Cherng and G. D. J. Su, "Fabrication of polydimethylsilo×ane microlens array on spherical surface using multi-replication process," J.Micromech. Micrieng, 24, 2014.
    [33] H. Jung and K. H. Jeong, "Monolithic Polymer Microlens Arrays with High Numerical Aperture and High Packing Density," ACS Appl. Mater. Interfaces, 7, pp. 2160-2165, 2015.
    [34] L. Gitlin, P. Schulze and D.Belder, "Rapid replication of master structures by double casting with PDMS," Lab on a Chip, 9, pp. 3000-3002, 2009.
    [35] G.Shao, J. Wu, Z. Cai and W. Wang, "Fabrication of elastomeric high-aspect-ratio microstructures using polydimethylsilo×ane(PDMS) double casting technique," Sensors and Actuators A, 178, pp. 230-236, 2012.
    [36] Y. Chen, W. Pei, R. Tang, S.Chen and H. Chen, "Conformal coating of parylene for surface anti-adhesion in polydimethylsilo×ane(PDMS)double casting technique," Sensors and Actuators A, 189, pp. 143-150, 2013.
    [37] Z. Isiksacan, M. T. Guler, B. Aydogdu, I. Bilican and C. Elbuken, "Rapid fabrication of microfluidic PDMS devices from reusable PDMS molds using laser ablation," J.Micromech. Micrieng, 26, 2016.
    [38] P. C. Chen, Y. P. Chang, R. H. Zhang, "Microfabricated Microfluidic Platforms for Creating Microlens Array", Optics Express, 25, pp. 16101-16115, 2017.
    [39] K. Zhonga, Y. Gaoa, F. Li, Z. Zhang, N. Luob, “Fabrication of PDMS microlens array by digital maskless grayscale lithography and replica molding technique,” Optik, 125, pp. 2413-2416, 2014.
    [40] C.W. Beh, W. Zhouab, T.H. Wang, “PDMS–glass bonding using grafted polymeric adhesive – alternative process flow for compatibility with patterned biological molecules,” Lab Chip, 12, pp. 4120-4127, 2012.
    [41] L. Tang, M. S. Sheu, T. Chu, Y. H. Huang, “Anti-inflammatory properties of triblock silo×ane copolymer-blended materials,’’ Biomaterials, 20,pp. 1365-1370, 1999.
    [42] W. M. Choi and O. O. Park, “A soft-imprint technique for direst fabrication of submicron scale patterns using a surface-modified PDMS mold,” Microelectron Engineering, 70,pp. 131-136, 2003.
    [43] D. Fuard, T. Tzvetkova-Chevolleau, S. Decossas, P. Tracqui, P. Schiavone, “Optimization of poly-di-methyl-silo×ane (PDMS) substrates for studying cellular adhesion and motility,’’ Microelectronic Engineering, 2007.
    [44] N. Koo, M. Bender, U. Plachetka, A. Fuchs, T. Wahlbrink, J. Bolten, H. Kurz, “Improved mold fabrication for the definition of high quality nanopatterns by soft UV-Nanoiprint lithography using diluted PDMS material,”Microelectronic Engineering, 84,pp. 904-908, 2007.
    [45] K. Aran, L. A. Sasso, N. Kamdar and J. D. Zahn, “Irreversible, direct bonding of nanoporous polymer membranes to PDMS or glass microdevices,’’The Royal Society of Chemistry Lab Chip, 10,pp. 548-552, 2010.
    [46] H.-T. Hsieh, V. Lin, J.-L. Hsieh, G. D. J. Su, “Design and fabrication of long focal length microlens arrays,’’Optics Communications 284 , 2011.
    [47] 許淑喬,微透鏡翻製製製作研究與分析,明新科技大學化學工程與材料科技研究所,2011。
    [48] C. K. Malek and V. Saile, “Applications of LIGA technology to precision manufacturing of high-aspect-ratio micro-components and -systems: a review,’’Microelectronics Journal, 35, pp. 131-143, 2004.
    [49] C. H. Ahn, C. J.-W., G. Beaucage, J. H. Nevin, J.-B. Lee, A. Puntambekar, et al., “Disposable smart lab on a chip for point-of-care clinical diagnostics,’’ Proceedings of the IEEE, 92, pp. 154-173, 2004.
    [50] P. Mela, A. van den Berg, Y. Fintschenko, E. B. Cummings, B. A. Simmons, and B. J. Kirby, “The zeta potential of cyclo-olefin polymer microchannels and its effects on insulative (electrodeless) dielectrophoresis particle trapping devices,’’ELECTROPHORESIS, 26, pp. 1792-1799, 2005.
    [51] Y. Yang, C. Li, J. Kameoka, K. H. Lee, and H. G. Craighead, “A polymeric microchip with integrated tips and in situ polymerized monolith for electrospray mass spectrometry’’Lab on a Chip, 5, pp. 869-876, 2005.
    [52] E. Vázquez, C. A. Rodríguez, A. Elías-Zúñiga, and J. Ciurana, “An e×perimental analysis of process parameters to manufacture metallic micro-channels by micro-milling,’’The International Journal of Advanced Manufacturing Technology, 51, pp. 945-955, 2010.
    [53] J. S. Mecomber, D. Hurd, and P. A. Limbach, “Enhanced machining of micron-scale features in microchip molding masters by CNC milling,’’International Journal of Machine Tools and Manufacture, 45, pp. 1542-1550, 2005.
    [54] M. Y. Ali, “Fabrication of microfluidic channel using micro end milling and micro electrical discharge milling,’’ International Journal of Mechanical and Materials Engineering (IJMME), 4, pp. 93-97, 2009.
    [55] M. L. Hupert, W. J. Guy, S. D. Llopis, H. Shadpour, S. Rani, D. E. Nikitopoulos, and S. A. Soper, “Evaluation of micromilled metal mold masters for the replication of microchip electrophoresis devices,’’ Microfluidics and Nanofluidics, 3, pp. 1-11, 2006.
    [56] E. S. Topal, “The role of stepover ratio in prediction of surface roughness in flat end milling,’’International Journal of Mechanical Sciences, 51, pp. 782-789, 2009.
    [57] M. Bua, T. Melvin, G. J. Ensell, J.S. Wilkinson, A.G.R. Evans, “A new masking technology for deep glass etching and its microfluidic application,” Sensors and Actuators A, 115, pp. 476-482, 2004.
    [58] A. Berthold, P. M. Sarro, M. J. Vellekoop, “Two-step glass wet-etching for micro-fluidic devices,” Proceedings of the SeSens workshop, 2000.
    [59] B. J. Polk, A. Stelzenmuller, G. Mijares, W. MacCrehan, and M. Gaitan, “Ag/AgCl microelectrodes with improved stability for microfluidics’’ Sensors and Actuators B: Chemical, 114, pp. 239-247, 2006.
    [60] M. Heckele, W. Bacher, and K. Müller, “Hot embossing-the molding technique for plastic microstructures,’’ Microsystem technologies, 4, pp. 122-124, 1998.
    [61] Y.-C. Su, J. Shah, and L. Lin, “Implementation and analysis of polymeric microstructure replication by micro injection molding,’’ Journal of Micromechanics and Microengineering, 14, pp. 415-422, 2004.
    [62] P.-C. Chen, C.-W. Pan, W.-C. Lee, and K.-M. Li, “Optimization of Micromilling Microchannels on a Polycarbonate Substrate,’’ International journal of precision engineering and manufacturing, 15(1), pp149-154, 2014.
    [63] K. Zhonga, Y. Gaoa, F. Li, Z. Zhang, N. Luob, “Fabrication of PDMS microlens array by digital maskless grayscale lithography and replica molding technique,” Optik, 125, pp. 2413-2416, 2014.
    [64] C. W. Beh, W. Zhouab, T. H. Wang, “PDMS-glass bonding using grafted polymeric adhesive-alternative process flow for compatibility with patterned biological molecules,” Lab Chip, 12, pp. 4120-4127, 2012.
    [65] M. A. Eddings, M. A. Johnson, B. K. Gale, “Determining the optimal PDMS-PDMS bonding technique for microfluidic devices,” J. Micromech. Microeng., 18, 067001(4p), 2008.
    [66] S. M. Hong, S. H. Kim, J. H. Kim, H. I. Hwang, “Hydrophilic Surface Modification of PDMS Using Atmospheric RF Plasma,”Journal of Physics: Conference Series., 34, pp. 656-661, 2006.
    [67] K. J. Park, K. G. Lee, S. Seok, B. G. Choi, M. K. Lee, T. J. Park, J. Y. Park, D.H. Kim, S.J. Lee, “Micropillar arrays enabling single microbial cell encapsulation in hydrogels,”Lab Chip, 14, pp. 1873-1879, 2014.
    [68] M. A. Eddings, M. A. Johnson and B. K. Gale, "Determining the optimal PDMS–PDMS bonding technique for microfluidic devices," J. Micromech. Microeng, 18, 2008
    [69] Velve´-Casquillas G, La Berre M, Terriac E et al. "PDMS thickness vs spin-coating speed," 2009.
    [70] 黃俊瑋,以類LIGA技術與紫外光固化膠製作微透鏡陣列之新式製程設計探討,國立中興大學精密工程研究所,2004。
    [71] 林圳盛,利用紫外線硬化樹脂製作微結構之探討及應用,國立雲林科技大學機械工程系研究所,2005。

    QR CODE