簡易檢索 / 詳目顯示

研究生: 蔡昱倫
Yu-Lan Tasi
論文名稱: 瀝青混凝土抗裂指標評估與績效驗證流程建立
Evaluating Benchmark of Cracking Resistance and Establishing Volumetric Design with Performance Verification for Asphalt Mixtures
指導教授: 廖敏志
Min-Chih Liao
口試委員: 陳建旭
Jian-Shiuh Chen
林彥宇
Yen-Yu Lin
蘇育民
Yu-Min Su
盧之偉
Chih-Wei Lu
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 140
中文關鍵詞: 再生瀝青混凝土間接開裂試驗間接張力試驗漢堡車轍輪跡試驗績效評估規範值
外文關鍵詞: CT_Index, Tensile Asphalt Cracking Test, Hamburg Wheel Tracking Test
相關次數: 點閱:188下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,路面常在未達到預期之設計壽命就提前破壞,此變化是因為台灣平均降雨量高且台灣車流量也穩占世界前茅,車輛的反覆輾壓與雨水沖刷下,瀝青路面急速老化,所以更容易造成路面疲勞破壞與車轍破壞,使施工成本大幅上升,除了人力與材料費用外,還會造成交通堵塞之困擾,為解決此現象本研究探討當使用不同瀝青混凝土時其抗開裂性能與車轍性能,分別使用台灣常用之基底瀝青AC-20、AC-10與改質Ш型瀝青、橡膠瀝青、溫拌瀝青互相比較,也因為近年永續經營的議題日漸重要,故分別添加RAP其膠泥針入度大於15、小於10和介於兩者之間之再生瀝青路面進行試驗。本研究使用基本物性試驗、馬歇爾配比設計(Marshall Mix Design)、間接張力試驗(Indirect tensile Test)、間接開裂試驗(Indirect Tensile Asphalt Cracking Test, IDEAL-CT)與漢堡車轍輪跡試驗(Hamburg Wheel Tracking Test)來分別測試試體強度、疲勞性能和抗車轍性能,其中建議瀝青混合物其CT_Index值應介於31~255之間,本研究整合不同瀝青混合料來評估CT_Index值之基準性,在研究結果顯示大部分瀝青混合料符合此建議值範圍,但當使用橡膠瀝青混合料時,CT_Index值遠超於建議值上限,所以本研究建議個別瀝青混合料可在重新探討CT_Index值範圍。
    此外,因應台灣交通量之差別,在都市地區與鄉村地區交通量差距甚大,建議應通過績效驗證定義在不同交通量時,瀝青混凝土除了要符合體積配比設計之需求,當在交通量高時,還需要輔以其他績效試驗規範值進行驗證,使未來可以因應交通量需求來制定不同等級之瀝青混凝土。


    Recently, the premature distresses for the asphalt pavements are regularly found within the pavement design life. This change is due to the combination of heavy rainfall as well as high traffic volume in Taiwan. With the load repetiotions and moisture damage effect, the asphalt pavements in some regions have shown severe failures. It is known that fatigue cracking and rutting are the two primary distress modes. Regular repair and rehabilitation work increase the maintenance costs, and also cause the problem with traffic congestion. In order to address this issue, this study focuses on the evaluation of rutting and cracking performance of various asphalt mixtures. The results obtained form physical properties, Marshall mix design, indirect tensile test, indirect tensile asphalt cracking test and Hamburg wheel tracking test were included to have further analysis. Results show that the CT_Index value of the conventional dense-graded asphalt mixtures ranged between 31 and 255, but rubberized asphalt mixtures exhibited the much higher CT_Index value due to their gap gradation. Regarding the draft specification in terms of balanced performance, three-level requirments based on the equivalent single axle loads (ESALs) were established in this specification framework. The further research and more field data are required to validate the laboratory test results.

    摘要 I ABSTRACT III 致謝 IV 目錄 V 表目錄 IX 圖目錄 XI 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 研究目的 3 1.4 研究範圍 3 第二章 文獻回顧 4 2.1 瀝青 4 2.2 再生瀝青混凝土回收料(RAP) 4 2.3 RAP老化瀝青 5 2.4 瀝青混凝土之開裂與疲勞行為 7 2.5 各國車轍規範比較 13 2.6 前人數據 20 第三章 研究計畫 23 3.1 試驗範圍 23 3.2 研究流程 24 3.3 試驗材料 26 3.3.1 天然粒料 26 3.3.2 再生瀝青混合料(RAP) 27 3.3.3 瀝青膠泥 27 3.3.4 填充料 28 3.3.5 其他材料 29 3.3.6 試驗編號 30 3.4 瀝青試驗方法 33 3.4.1 針入度試驗 33 3.4.2 Brookfield黏滯度試驗 34 3.4.3 瀝青比重試驗 36 3.4.4 軟化點試驗 37 3.4.5 RAP含油量測定試驗 38 3.5 粒料試驗 41 3.5.1 篩分析試驗 41 3.5.2 比重及吸水率試驗試驗 41 3.5.3 粗粒料洛杉磯磨損率試驗 44 3.5.4 扁長率試驗 46 3.5.5 破碎面試驗 47 3.5.6 含砂當量試驗 49 3.5.7 阿太堡限度試驗 50 3.5.8 健度試驗 53 3.6 瀝青混合料試驗方法 55 3.6.1 馬歇爾配比設計 55 3.6.2 最大理論比重試驗 60 3.6.3 間接張力強度試驗 61 3.6.4 間接張力開裂試驗 62 3.6.5 車轍輪跡試驗 64 第四章 結果與分析 65 4.1 材料基本性質 65 4.1.1 天然粒料基本性質 65 4.1.2 RAP基本性質 67 4.1.3 瀝青性質 70 4.2 瀝青混凝土配比設計方法 72 4.2.1 馬歇爾配比設計(控制組) 72 4.2.2 馬歇爾配比設計(對照組) 75 4.2.3 馬歇爾穩定值試驗 82 4.3 抗開裂試驗 83 4.3.1 間接開裂指數(CTIndex) 83 4.3.2 間接張力強度分析(IDT) 85 4.3.3 間接張力指數(CTIndex)與間接張力強度(IDT)之間之影響 87 4.3.4 峰值後斜率m75與間接開裂指數(CTIndex)結果影響 88 4.4 漢堡車轍輪跡試驗 89 4.4.1 車轍輪跡深度 90 4.4.2 動穩定值 92 4.5 實驗室數據比對 93 4.5.1 馬歇爾穩定值試驗 93 4.5.2 間接開裂指數(CTIndex) 95 4.5.3 間接張力強度分析(IDT) 98 4.5.4 車轍輪跡試驗 101 4.5.5 動穩定值 104 4.5.6 動穩定值與CTIndex值之間關係 106 4.6 試驗比較 107 4.7 規範初擬 112 第五章 結論與建議 116 5.1 結論 116 5.2 建議 117 參考文獻 118 附錄 122

    石濟維. (2021). 基於老化瀝青有效反應量之再生瀝青混凝土績效平衡設計. 碩士論文,台北: 國立台灣科技大學營建工程系.
    林志棟, 王劍能, 陳德成. (2007). 美國Superpave瀝青膠泥PG等級介紹與應用. 鋪面工程, 5, 頁 1-10.
    曹林濤,李立寒,孫大權,陳建軍. (2007). 瀝青混和料車轍試驗評價指標研究. 29, 200092.
    陳建旭、陳世梵、廖敏志、黃碩偉. (2015). 瀝青組成、老化、還原與應用. 台灣公路工程, 14-42.
    黃三哲,何鴻文,陳仙洲,郭鴻騰. (2017). 應用漢堡車轍輪跡儀試驗探討鋪面工程品質. 台灣公路工程, 43, 頁 2-27.
    蔡攀鱉. (2009). 瀝青混凝土. 三民股份有限公司.
    盧祺龍. (2021). 瀝青膠泥微觀表面形貌與疲勞性能研究. 碩士論文, 台北: 國立台灣科技大學營建工程系.
    瀝青混凝土之一般要求. (2016). 公路總局施工說明書.
    羅玉珊. (2020). 橡膠改質對瀝青黏結料與混合料之工程績效影響. 碩士論文, 台北: 國立台灣科技大學營建工程系.
    AASHTO. (2015). Mechanistic empirical pavement design guide: A manual of practice.
    Antaki, G.,& Gilada, R. (2014). Nuclear Power Plant Safety and Mechanical Integrity: Design and Operability of Mechanical Systems, Equipment and Supporting Structures. Butterworth-Heinemann.
    Bala, N., & Napiah,M. (2020). Fatigue life and rutting performance modelling of nanosilica/polymer composite modified asphalt mixtures using Weibull distribution. International Journal of Pavement Engineering, 21, pp. 497-506.
    Billiter, T. C., Davison, R. R., Glover, C. J., & Bullin, J. A. (1997). Physical properties of asphalt-rubber binder. Petroleum Science and Technology, 15, pp. 205-236.
    Cooley, L., Kandhal, P. S., Buchanan, M. S., Fee, F., Epps, A. (2000). Loaded wheel testers in the United States: State of the practice. Washington: DC: Transportation Research Board, National Research Council.
    ASTM D3515. (2015). Standard Specification for Hot-Mixed, Hot-Laid Bituminous Paving Mixtures (Withdrawn 2009). American Society for Testing and Materials.
    David Newcomb, Fujie Zhou. (2018). Balanced Design of Asphalt Mixtures. Texas A&M Transportation Institute, 頁 77845.
    Diab, A., Singh,D.,&Pais, J. C. (2017). Moisture susceptibility of asphalt mixtures: A literature review. India.
    DidierLesueur. (2009). The colloidal structure of bitumen: Consequences on the rheology and on the mechanisms of bitumen modification. Advances in Colloid and Interface Science, 145, pp. 42-82.
    Du, Yinfei, Chen, Jiaqi, Han, Zheng, Liu, Weiaheng. (2018). A review on solutions for improving rutting resistance of asphalt pavement and test methods. Construction and Building Materials, 168, pp. 893-905.
    Fujie Zhou, Soohyok Im, Lijun Sun, Tom Scullion. (2017). Development of an IDEAL Cracking Test for Asphalt Mix Design, Quality Control and Quality Assurance. Road Materials and Pavement Design, 18, pp. 405-427.
    Hesp, S. A, Soleimani, S., Phillips, T., Smith, D., Marks, P., & Tam, K. K. (2009). Asphalt pavement cracking: analysis of extraordinary life cycle variability in eastern and northeastern Ontario. International Journal of Pavement Engineering, 10, pp. 209-227.
    Jie Han, Harihar Shiwakoti. (2016). Wheel tracking methods to evaluate moisture sensitivity of hot-mix asphalt mixtures. Frontiers of Structural and Civil Engineering, 10, pp. 30–43.
    Joana Peralta,Hugo M.R.D.Silva,Loic Hiliou,Ana V. Machado,Jorge Pais,R.Christopher Williams. (2012). Mutual changes in bitumen and rubber related to the production of asphalt rubber binders. Construction and Building Materials, pp. 557-565.
    Johnson, T., Bala, N., Bayat, A., & Hashemian, L. (2021). Laboratory evaluation of cracking resistance for asphalt mixtures modified with nanoclay and nanocellulose. Canadian Journal of Civil Engineering, 48, pp. 1674-1682.
    Khaled Ksaibati, Shiva Rama, Krishna Sayiri. (2006). Utilization of Wyoming Bottom Ash in Asphalt Mixes. Mountain-Plains Consortium.
    Lesueur, D. (2009). The colloidal structure of bitumen: Consequences on the rheology and on the mechanisms of bitumen modification. Advances in Colloid and Interface Science, 145, pp. 42-82.
    Liseane P.T.L.Fontes, GlicérioTrichês, Jorge C.Pais, Paulo A.A.Pereira. (2010). Evaluating permanent deformation in asphalt rubber mixtures. Construction and Building Materials, 24, pp. 1193-1200.
    Lubinda F.Walubita, Luis Fuentes, Adrianus Prakoso, Lorena M.Rico Pianeta, Julius J.Komba, Bhaven Naik. (2020). Correlating the HWTT laboratory test data to field rutting performance of in-service highway sections. Construction and Building Materials, 236.
    Paul Boriack, Samer W. Katicha, Gerardo W. Flintsch. (2014). Laboratory Study on Effects of High Reclaimed Asphalt Pavement and Binder Content: Stiffness, Fatigue Resistance, and Rutting Resistance. Transportation Research Record: Journal of the Transportation Research Board, 2445, pp. 64-74.
    Qing Lu, John T. Harvey. (2006). Evaluation of Hamburg Wheel-Tracking Device Test with Laboratory and Field Performance Data. Transportation Research Record: Journal of the Transportation Research Board, 1970, pp. 25-44.
    R.B. McGennis, R.M. Anderson, T.W. Kennedy, M. Solaimanian. (1944). Background of SUPERPAVE Asphalt Mixture Design & Analysis. FHWA, Final Report, p. 160.
    R.Tauste, F.Moreno-Navarro, M.Sol-Sánchez, M.C.Rubio-Gámez. (2018). Understanding the bitumen ageing phenomenon: A review. Construction and Building Materials, 192, pp. 593-609.
    Texas. (2014). Standard Specifications for Construction and Maintenance of Highways, Streets, and Bridges. Texas: Texas Department of Transportation.
    W. D. Fernández-Gómez, H. Rondón Quintana, F. Reyes Lizcano. (2013). A review of asphalt and asphalt mixture aging. Una revisión. Ingenieria e investigacion, 33, pp. 5-12.
    Wilmar DaríoFernández-Gómez, Hugo AlexanderRondón Quintana, Carlos EnriqueDaza, Fredy AlbertoReyes Lizcano. (2014). The effects of environmental aging on Colombian asphalts. Fuel, 115, pp. 321-328.
    Zhiwang Zhang, Reynaldo Roque, Bjorn Birgisson. (1996). Evaluation of Laboratory-Measured Crack Growth Rate for Asphalt Mixtures. In Asphalt Paving Technology: Association of Asphalt Paving Technologists-Proceedings of the Technical Sessions, 1767, pp. 67-75.

    QR CODE