簡易檢索 / 詳目顯示

研究生: 蕭辰源
Chen-Yuan Xiao
論文名稱: 創新異質整合三模態相位陣列之研究
A Study of Innovative Heterogeneous Integrated Tri-mode Phase Array
指導教授: 馬自莊
Tzyh-ghuang Ma
口試委員: 吳宗霖
Tzong-lin Wu
楊成發
Chang-fa Yang
廖文照
Wen-jiao Liao
王釗偉
Chao-wei Wang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 112
中文關鍵詞: 合成傳輸線串聯LC諧振器枝幹耦合器交叉跨線相位陣列天線波束切換陣列信號回溯陣列范艾達陣列相位共軛陣列
外文關鍵詞: tri-mode, retrodirective, Van Atta array, phase conjugating array.
相關次數: 點閱:331下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一款創新異質整合三模態相位陣列天線系統。此異質整合系統未曾記錄於任何文獻記載,實屬全新之架構,故極具創新價值。此系統之主要特色,乃於三頻帶實現不同的操作模式,其於低頻帶為一巴特勒矩陣,可實現波束切換之功能;而於中、高頻帶則分別為范艾達陣列與相位共軛陣列,皆具有信號回溯陣列之特性。
    為實現該三模態相位陣列系統,本論文提出四款具LC諧振器之新型三模態合成傳輸線。該合成傳輸線係以線電感、平行板電容、串聯LC諧振器與表面附著電容所組成。構成合成線之串聯LC諧振器可於共振時提供虛接地之傳輸零點,可使合成傳輸線於特定頻率具有開路輸入阻抗,以自動隱暱系統之特定電路區塊。此獨特特性乃為構成多模態陣列操作之主要核心。
    將四款合成傳輸線進行整合,吾人成功實現出此異質整合陣列系統之核心元件:三模態枝幹耦合器、三模態交叉跨線、及雙工器。將核心元件與各輔助元件包含:增益放大器、環路器、切換器及混波器等進行整合,可完成本異質整合相位陣列之完整系統。該系統經由輻射場型之實驗量測,可充分驗證該波束切換與信號回溯之功能。本論文詳盡討論此創新系統架構之設計概念、電路佈局,及模擬與量測結果,並進行適當討論。


    An innovative heterogeneous integrated tri-mode phased array is proposed and investigated in this thesis. The proposed architecture is original, which has never been reported in the open literature. The novel integrated tri-mode phased array is able to provide three distinct operational modes at three designated frequencies. In the low band, it behaves equivalent to a Butler matrix for beam-switching operation; in the mid band, it becomes identical to a Van Atta retrodirective array. The phase conjugating array is realized also for retrodirective purpose in the high band.
    The key building blocks to successfully implement the unique phased array are the tri-mode branch-line couplers, tri-mode crossovers, and low-/high-band diplexers. These essential blocks are realized by four newly proposed tri-mode synthesized transmission lines consisting of quasi-lumped line inductors, parallel-plate capacitors, series LC tanks, and SMT capacitors in the microstrip form.
    By integrating the developed core circuit blocks and auxiliary commercial components such as the gain amplifiers, circulators, switches, drain mixers, and quasi-Yagi antennas, a complete system is realized and tested. The circuit responses and radiation characteristics of the heterogeneous integrated phased array are validated through the experiments. The design concept, circuit configuration, and simulated and measured results are carefully discussed and investigated in this thesis.

    摘要 VI Abstract VIII 誌謝 X 目錄 XII 圖目錄 I 表目錄 VI 第一章 緒論 1 1.1 研究動機與目的 1 1.2 文獻探討 2 1.3 研究貢獻 4 1.4 論文組織 5 第二章 異質整合三模態相位陣列天線 6 2.1 前言 6 2.2 陣列天線 6 2.2.1波束切換陣列天線 6 2.2.2范艾達陣列天線 7 2.2.3相位共軛陣列天線 8 2.3 電路架構與設計原理 9 2.3.1 低頻帶電路操作說明 10 2.3.2 中頻帶電路操作說明 11 2.3.3 高頻帶電路操作說明 11 2.3.4 三模態相位陣列電路元件 12 2.3.5 結合雙工器之具12埠三模態相位陣列電路 14 2.3.6 三模態相位陣列電路之低頻帶與中頻帶相位補償 16 2.3.7 三模態相位陣列電路之高頻帶相位補償 18 2.3.8 三模態相位陣列電路元件之需求 19 2.3.9 三模態相位陣列電路之完整量測架構 20 2.4 結語 20 第三章 三模態相位陣列系統之構成元件 21 3.1 前言 21 3.2 合成傳輸線 21 3.2.1 設計範例A 21 3.2.1.1 電路佈局與設計原理 21 3.2.1.2 實驗結果與討論 25 3.2.2 設計範例B 27 3.2.2.1 電路佈局與設計原理 27 3.2.2.2 實驗結果與討論 30 3.2.3 設計範例C 32 3.2.3.1 電路佈局與設計原理 32 3.2.3.2 實驗結果與討論 34 3.2.4 設計範例D 36 3.2.4.1 電路佈局與設計原理 36 3.2.4.2 實驗結果與討論 41 3.3枝幹耦合器與交叉跨線之合成與設計 43 3.3.1 三模態枝幹耦合器 43 3.3.1.1 電路佈局與設計原理 43 3.3.1.2 實驗結果與討論 46 3.3.2 三模態交叉跨線 47 3.3.2.1 電路佈局與設計原理 47 3.3.2.2 實驗結果與討論 50 3.4 雙工器 51 3.4.1 電路佈局與設計原理 51 3.4.2 實驗結果與討論 54 3.5 準八木天線 57 3.5.1 電路佈局與設計原理 57 3.6 汲極混波器與增益放大器 63 3.6.1汲極混波器 63 3.6.1.2設計與量測結果 63 3.6.2增益放大器 65 3.7 切換器與環路器 66 3.7.1切換器 66 3.7.1.1 SPDT切換器 66 3.7.1.2 SP4T切換器 68 3.7.2環路器 69 3.8 結語 70 第四章 三模態相位陣列天線 71 4.1 前言 71 4.2 三模態系統之電路驗證 71 4.2.1 低頻帶系統之電氣響應 74 4.2.2 中頻帶系統之電氣響應 77 4.2.3 高頻帶系統之電氣響應 79 4.3 三模態系統之輻射場型量測驗證 82 4.3.1 全系統量測架構 82 4.3.2 低頻帶之輻射場型量測 83 4.3.3 中高頻帶之輻射場型量測 86 4.4 結語 96 第五章 結論 97 5.1 總結 97 5.2 未來發展 97 參考文獻 99 附件 103

    [1] [Online]: http://eblog.cisanet.org.tw/80366493/article/content.aspx?ArticleID=1352

    [2] P. Chen, W. Hong, Z. Kuai, and J. Xu, “A Double Layer Substrate Integrated Waveguide Blass Matrix for Beamforming Applications,” IEEE Trans Microw. Wireless Compon. Lett., vol.19, no.6, pp. 374–376, Jun. 2009.

    [3] T. Djerafi, N. J. G. Fonseca, and K. Wu, “Planar ku-Band 4 × 4 Nolen Matrix in SIW Technology,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 2, pp. 259–266, Feb. 2010.

    [4] C. Liu, S. Xiao, Y. X. Guo, M. C. Tang, Y. Y. Bai, and B. Z. Wang, “Circularly Polarized Beam-Steering Antenna Array With Butler Matrix Network,” IEEE Antennas Wireless Propag. Lett., vol.10, pp. 1278–1281, 2011.

    [5] Y. S. Jeong and T. W. Kim, “Design and analysis of swapped port coupler and its application in a miniaturized Butler matrix,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 4, pp. 764–770, Apr. 2010.

    [6] C.-W. Wang, T.-G. Ma and C.-F. Yang, “A new planar artificial transmission line and its applications to miniaturized Butler matrix,” IEEE Trans. Microwave Theory Tech., vol. 55, no. 12, pp. 2792–2801, Dec. 2007.

    [7] J. K. Lee and K. Chang, “Dual-band switched beam array fed by dual-band Butler matrix,” Electron. Lett., vol. 47, no. 21, pp. 1164–1165, Oct. 2011.

    [8] S. F. Peik, B. Jolley, R. R. Mansour, “High temperature superconductive Butler matrix beam former for satellite applications,” IEEE MTT-S Int. Microw. Symp. Dig., vol.4, pp.1543,1546 vol.4, 13-19 June 1999.

    [9] Y. M. Madany, H. M. Elkamchouchi, A. A. Salama, “Design and analysis of miniaturized conformal paraboloid smart antenna system using 1×8 switched Butler Matrix for wireless applications,” Antenna Technology and Applied Electromagnetics (ANTEM), Int. Symp., pp.1,4, 25-28 June 2012.

    [10] C.-C. Chang, R.-H. Lee, and T.-Y. Shih, “Design of a beam switching/steering Butler matrix for phased array system,” IEEE Trans. Antennas Propaga., vol. 58, no. 2, pp. 367–374, Feb. 2010.

    [11] A. Malczewski, S. Eshelman, B. Pillans, J. Ehmke, and C. L. Goldsmith, “X-band RF MEMS phase shifters for phased array applications,” IEEE Microwave and Guided Wave Lett., vol. 9. no. 12, pp. 517–519, Dec. 1999.

    [12] T. Nishio, Y. Wang, and T. Itoh, "Multiple-beam adaptive array architecture using channel-level FDMA concept," in IEEE Antenna Propaga. Society Int. Symp. Dig., vol. 3, Columbus, OH, Jun. 22-27, 2003, pp. 908–911.
    [13] I. Chiba, R. Miura, T. Tanaka, and T. Karasawa, "Digital beam forming (DBF) antenna system for mobile communications," IEEE Aerospace Electronic Systems Magazine, no. 12, no. 9, pp. 31–41, Sep. 1997.

    [14] Y. Li and V. Jandhyala, “Design of retrodirective antenna arrays for short-range wireless power transmission,” IEEE Trans. Antennas Propaga., vol. 60, no. 1, pp. 206–211, Jan. 2012.

    [15] S. N. Hsieh and T. H. Chu, “Linear Retro-directive array antenna using 90° hybrids,” IEEE Trans. Antennas Propaga., vol. 56, no. 6, pp. 1573-1580, Jun. 2008.

    [16] S. J. Chung, S. M. Chen and Y. C. Lee, “A novel bi-directional amplifier with applications in active Van Atta retrodirective arrays,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 2, pp. 542–547, Feb. 2003.

    [17] Y.-J. Ren and K. Chang, “New 5.8-GHz circularly polarized retrodirective rectenna arrays for wireless power transmission,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 7, pp. 2970–2976, Jul. 2006.

    [18] J. A. Vitaz, A. M. Buerkle, and K. Sarabandi, “Tracking of metallic objects using retro-reflective array at 26 GHz,” IEEE Trans. Antennas Propaga., vol. 58, no. 11, pp. 3539–3544, Nov. 2010.

    [19] L. Chiu, Q. Xue, and C. H. Chan, “Phase-conjugated arrays using low conversion-loss resistive phase-conjugating mixers and stub-loaded patch antennas,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 8, pp.1764–1773, Aug. 2008.

    [20] S. C. Yen and T. H. Chu, “A Retro-directive array antenna with phase conjugation circuit using sub-harmonically injection-locked self-oscillating mixers,” IEEE Trans. Antennas Propaga., vol. 52, no. 1, pp. 154–164, Jan. 2004.

    [21] T. Brabetz, V.F. Fusco, and S. Karode, “Balanced subharmonic mixers for retrodirective-array applications,” IEEE Trans. Microw. Theory Tech., vol. 49, no. 3, pp. 465–469, Mar. 2001.

    [22] R. Y. Miyamoto, Y. Qian, and T. Itoh, “An active integrated retrodirective transponder for remote information retrieval-on-demand,” IEEE Trans. Microw. Theory Tech., vol. 49, no.9, pp. 1658–1662, Sept. 2001.

    [23] R. Y. Miyamoto and T. Itoh, “Retrodirective arrays for wireless communications,” IEEE Microw. Mag., vol. 3, pp. 71–79, Mar. 2002.

    [24] S.-J Chung, T.-C. Chou, and Y.-N Chiu, “A novel card-type transponder designed using retrodirective antenna array,” in IEEE MTT-S Int. Microwave Symp. Dig., pp.1123–1126, 2001.

    [25] H. Matsumoto, “Research on solar power satellites and microwave power transmission in japan,” IEEE Microw. Mag., vol. 3, no. 4, pp.36–45, Dec. 2002.

    [26] S. Lim, K. M. K. H. Leong, and T. Itoh, “Adaptive power controllable retrodirective array system for wireless sensor server applications,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 12, pp. 3735–3743, Dec. 2005.

    [27] M. Cohn, “A millimeter wave retrodirective transponder for collision/obstacle avoidance and navigation/location,” in Proc. IEEE-IEE Vehicle Navigation Information Systems Conf., Ottawa, ON, Canada, pp.534–538, Oct. 1993.

    [28] J.-W. Tsai, C.-H. Wu, and T.-G. Ma, “Novel dual-mode retro-directive array antenna using synthesized microstrip lines,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 12, pp. 3375–3388, Dec. 2011.

    [29] J.-Y. Zou, C.-H. Wu, and T.-G. Ma, “Heterogeneous integrated beam-switching/retrodirective array using synthesized transmission line,” IEEE Trans. Microw. Theory Tech. ,to be published.

    [30] A. Natarajan, A. Komijani, and A. Hajimiri, “A fully integrated 24-GHz phased-array transmitter in CMOS,” IEEE J. Solid-State Circuits, vol 41, no.12, pp.2502–2514, Dec. 2006

    [31] S. Christie, R. Cahill, N. B. Buchanan, V. F. Fusco, N. Mitchell, Y. V. Munro, and G. Maxwell-Cox, “Rotman lens-based retrodirective array,” IEEE Trans. Antennas Propagat., vol. 60, no. 3, pp. 1343–1351, Mar. 2012.

    [32] L. Schulwitz and A. Mortazawi, “A new low loss Rotman lens design for multi beam phased arrays,” IEEE MTT-S Int. Microw. Symp. Dig., pp. 445–448, Jun. 2006.

    [33] C.-H. Lai, C.-Y. Shiau, and T.-G. Ma, “Microwave three-channel selector using tri-mode synthesized transmission lines,” IEEE Trans. Microw. Theory Tech., under review process.

    [34] C.-C. Wang, C.-H. Lai, and T.-G. Ma, “Miniaturized coupled-line couplers using uniplanar synthesized coplanar waveguides,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 8, pp. 2266–2276, Aug. 2010.

    [35] C. Caloz and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, New York: Wiley, 2006.

    [36] H. C. Huang, J. C. Lu, and P. Hsu, "A Simple Planar High-Directivity Yagi-Uda Antenna with a Concave Parabolic Reflector," in Proc. IEEE Int. Workshop on Antenna Tech., Mar. 2010, pp. 1–4.

    [37] Y. Qian, W. R. Deal, N. Kaneda, and T. Itoh, “Microstrip-fed quasi-Yagi antenna with broadband characteristics,” Electron. Lett., vol. 34, no. 23, pp. 2194–2196, Nov. 1998.

    [38] 蔡志偉,「新型雙頻帶信號回溯陣列天線之研究」,碩士論文,國立台灣科技大學,民國九十九。

    QR CODE