簡易檢索 / 詳目顯示

研究生: 羅國源
Kuo-Yuan Lo
論文名稱: 具虛擬實境的低功耗多節點穿戴式動作監控系統
A Low Power Multi-Node Wearable Monitoring System with Virtual Reality
指導教授: 林淵翔
Yuan-Hsiang Lin
口試委員: 林淵翔
Yuan-Hsiang Lin
陳筱青
Hsiao-Chin Chen
林昌鴻
Chang-Hong Lin 
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 100
中文關鍵詞: 動作監控系統感測器校正多節點架構低功耗
外文關鍵詞: movement monitoring system, sensor calibration, multi-node, low power
相關次數: 點閱:280下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

許多疾病或是事故的後遺症會造成人的肢體障礙,像是中風、運動傷害及交通事故,這些人往往需要到醫院進行復健治療,才能恢復傷害之前的活動力。以往的復健療程需要患者到醫院才能進行,且由治療師使用量角器量測並監控復健動作,才能得知患者的活動範圍是否有進步。一來復健地點會被侷限在醫院,造成患者的不方便;二來透過治療師使用量角器量測活動監控角度容易產生人為誤差。
為了改善上述的缺點及不方便,本論文開發出一套能監控使用者關節活動角度的穿戴式動作監控系統,除了讓使用地點不受限以外,也能提供較客觀的關節活動角度,此外本系統還具有下列四項優點:多節點擴充功能,讓使用者能夠快速地擴增多個肢段的監控;體積小且輕盈的低功耗穿戴式裝置,讓裝置方便攜帶且具有高續航力;感測器快速校正的功能,讓感測器能在不同的溫濕度下也能提供準確的數值;最後是虛擬實境的即時畫面回饋應用程式,讓使用者能透過螢幕即時得知自身的關節活動狀況。
本論文所開發的穿戴式動作監控裝置與光學三維動作追蹤系統(Qualisys)比較後,在馬達實驗驗證中得到在旋轉X軸下的平均誤差與標準差為0.44°±0.161°;在旋轉Y軸下的平均誤差與標準差為0.368°±0.338°;在旋轉Z軸下的平均誤差與標準差為0.193°±0.287°。另外,此裝置經過功率消耗測試,量測到的總電流平均約為5.44mA左右,其電流消耗遠小於目前市售裝置x-IMU的50mA~150mA。


Many diseases or accidents lead to physical disabilities, for example, stroke, sport injuries, or traffic accidents. Those whom suffered from physical disabilities may have to go to the hospital for rehabilitation to recover from sequela of diseases or injuries. However, the place for rehabilitation is limited to the hospital may leads to patient’s inconvenience, and the results of the range of motion obtained from the goniometry may diverse from different therapists.
To improve the inconvenience and disadvantages above, a wearable movement monitoring system is derived in this study to monitor user’s range of motion. The system can automatically provide the information about the range of motion and allows users to conduct the physical treatment at home. Besides, four benefits also come out: the extension of multi-node to extend the monitoring for more limbs, small and light-weighted low-power wearable device to improve the portability and the endurance, a fast calibration of the sensor to increase the accuracy under different environmental conditions, and a virtual-reality based real-time application to provide feedbacks of the movement information.
The results of the proposed wearable monitoring device have been compared to the optical motion capture system (Qualisys). In the motor-based experiment, a maximum mean error of 0.44°±0.161°, 0.368°±0.338°, and 0.193°±0.287° is obtained in the rotation of X-, Y-, and Z-axes, respectively. Furthermore, the power consumption of our device is about 5.44mA based on the power consumption test, which is much smaller than the commercial device x-IMU of 50mA ~ 150mA.

摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VI 表目錄 X 第一章、 緒論 1 1.1 研究動機與目的 1 1.2 文獻探討 2 1.3 論文架構 6 第二章、 研究背景 7 2.1 MARG感測器(Magnetic, Angular Rate, and Gravity,簡稱MARG) 7 2.2 藍牙低功耗(Bluetooth Low Energy,簡稱BLE) 7 2.3 方向估計演算法(Orientation Estimation Algorithm) 9 2.4 四元數(Quaternion) 9 2.5 虛擬實境(Virtual Reality) 10 第三章、 系統設計與方法 12 3.1 系統架構 12 3.2 裝置端硬體架構 14 3.2.1 硬體電路設計 15 3.2.2 硬體裝置的功率消耗 17 3.2.3 裝置實體圖 19 3.3 藍牙傳輸封包格式 19 3.4 韌體設計 20 3.5 MARG感測器訊號處理與校正 21 3.5.1 加速度計(Accelerometer)校正 22 3.5.2 陀螺儀(Gyroscope)校正 23 3.5.3 磁力計(Magnetometer)校正 25 3.6 藍牙低功耗多節點架構 31 3.7 手機軟體開發 32 3.7.1 Android Studio開發流程 33 3.7.2 Unity開發流程 34 3.8 手機應用程式功能介紹 35 3.8.1 裝置配戴介紹 37 3.8.2 手機實際操作畫面 38 3.9 實驗設計 40 3.9.1 裝置準確度校正 40 3.9.2 裝置與光學三維動作追蹤系統驗證 41 3.9.3 裝置放置於人體之關節量測 43 第四章、 實驗結果 46 4.1 裝置準確度校正 46 4.2 裝置與光學三維動作追蹤系統驗證 53 4.2.1 與市售裝置之比較 62 4.3 裝置放置於人體之關節量測 63 第五章、 結論與未來展望 72 參考文獻 73 附錄 77

[1] 邱弘毅, "腦中風之現況與流行病學特徵," 台灣腦中風學會會訊, vol. 15, no. 3, pp. 2-4, 9 2008.
[2] T. Truelsen, S. Begg and C. Mathers, "The global burden of cerebrovascular disease," Cerebrovascular Disease 21-06-06, Global Burden of Disease, May 2000.
[3] C. Anderson, C. N. Mhurchu, S. Rubenach, M. Clark, C. Spencer and A. Winsor, "Home or Hospital for Stroke Rehabilitation? Results of a Randomized Controlled Trial : II: Cost Minimization Analysis at 6 Months, Stroke," American Heart Association, pp. 1032-1037, 2000.
[4] J. M. Geddes and M. A. Chamberlain, "Home-based rehabilitation for people with stroke: a comparative study of six community services providing co-ordinated, multidisciplinary treatment," Clinical Rehabilitation, vol. 15, pp. 589-599, Dec 2001.
[5] M. Balaam, S. R. Egglestone, G. Fitzpatrick, T. Rodden, A.-M. Hughes, A. Wilkinson, T. Nind, L. Axelrod, E. Harris, I. Ricketts, S. Mawson and J. Burridge, "Motivating Mobility: Designing for Lived Motivation in Stroke Rehabilitation," in Session: Rehabilitation, pp. 3073-3082, Nov 2011.
[6] T.-Y. Pan, Y.-X. Wong, T.-C. Lee and M.-C. Hu, "A Kinect-based oral rehabilitation system," in Orange Technologies (ICOT), Dec 2015.
[7] A. Shapi'i, N. N. Bahari, H. Arshad, N. A. M. Zin and Z. R. Mahayuddin, "Rehabilitation exercise game model for post-stroke using Microsoft Kinect camera," in Biomedical Engineering, Mar 2015.
[8] W. C. Hsu, T. M. Wang, M. W. Liu, C. F. Chang, H. L. Chen and T. W. Lu, "Control of body's center of mass motion during level walking and obstacle crossing in older patients with knee osteoarthritis," Journal of Mechanics, vol. 26, pp. 229-237, Jun 2010.
[9] W. C. Hsu, T. W. Lu and M. W. Liu, "Lower limb joint position sense in patients with type II diabetes mellitus," Biomedical Engineering: Applications, Basis and Communications, vol. 21, pp. 271-278, Feb 2009.
[10] N. Omarkulov, K. Telegenov, M. Zeinullin, I. Tursynbek and A. Shintemirov, "Preliminary mechanical design of NU-Wrist: A 3-DOF self-aligning Wrist rehabilitation robot," in Biomedical Robotics and Biomechatronics (BioRob), 2016.
[11] K. X. Khor, P. J. H. Chin, A. R. Hisyam, C.F. Yeong, A. L. T. Narayanan and E. L. M. Su, "Development of CR2-Haptic: A compact and portable rehabilitation robot for wrist and forearm training," in Biomedical Engineering and Sciences (IECBES), 2014.
[12] H.-P. Brückner, R. Nowosielski, H. Kluge and H. Blume, "Mobile and wireless inertial sensor platform for motion capturing in stroke rehabilitation sessions," in Advances in Sensors and Interfaces (IWASI), 2013 5th IEEE International Workshop on, Bari, Italy, 2013.
[13] F. Parisi, G. Ferrari, A. Baricich, M. D'Innocenzo, C. Cisari and A. Mauro, "Accurate gait analysis in post-stroke patients using a single inertial measurement unit," in Wearable and Implantable Body Sensor Networks (BSN), 2016 IEEE 13th International Conference on, San Francisco, CA, USA, 2016.
[14] K. Leuenberger, R. Gonzenbach, E. Wiedmer, A. Luft and R. Gassert, "Classification of stair ascent and descent in stroke patients," in Wearable and Implantable Body Sensor Networks Workshops (BSN Workshops), 2014 11th International Conference on, Zurich, Switzerland, 2014.
[15] Y. Prathivadi, J. Wu, T. R. Bennett and R. Jafari, "Robust activity recognition using wearable IMU sensors," in SENSORS, 2014 IEEE, Valencia, Spain, 2014.
[16] L. Yu, L. Guo, X. Gu, J. Fu and Q. Fang, "LVQ neural network applied for upper limb motion recognition for home-based stroke rehabilitation," in Bioelectronics and Bioinformatics (ISBB), 2011.
[17] C. Cifuentes, A. Braidot, L. Rodríguez, M. Frisoli, A. Santiago and A. Frizera, "Development of a Wearable ZigBee Sensor System for Upper Limb," in Biomedical Robotics and Biomechatronics (BioRob), 2012 4th IEEE RAS & EMBS International Conference on, Rome, Italy, 2012.
[18] J. I. Pan, H.-W. Chung and J.-J. Huang, "Intelligent Shoulder Joint Home-Based Self-Rehabilitation," International Journal of Smart Home, vol.7, No.5, pp. 395-404, 2013.
[19] A. F. Alhajjar, S. Gobee and D. Vickneswari, "3D GUI system for upper limb rehabilitation using electromyography and inertia measurement unit sensor feedback," in Biomedical Engineering and Sciences (IECBES), 2014.
[20] D. E. Oarde, N. C. Libatique, G. L. Tangonan, D. M. Sotto and A. T. Pacaldo, "Browse Conferences > Humanoid, Nanotechnology, Inf... < Previous | Back to Results | Next >," in Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM), 2014 International Conference on, Palawan, Philippines, 2014.
[21] F. Wittmann, O. Lambercy, R. R. Gonzenbach, M. A. v. Raai, R. Höver, J. Held, M. L. Starkey, A. Curt, A. Luft and R. Gassert, "Assessment-driven arm therapy at home using an IMU-based virtual reality system," in Rehabilitation Robotics (ICORR), 2015.
[22] J. P. Amaro, S. Patrão, F. Moita and L. Roseiro, "Bluetooth low energy profile for MPU9150 IMU data transfers," in Bioengineering (ENBENG), 2017 IEEE 5th Portuguese Meeting on, Coimbra, Portugal, 2017.
[23] I. Inc., "MPU-9250 Porduct Specification Revision 1.0," 17 01 2014. [Online]. Available: https://cdn.sparkfun.com/assets/learn_tutorials/5/5/0/MPU9250REV1.0.pdf.
[24] M. Euston, P. Coote, R. Mahony, J. Kim and T. Hamel, "A complementary filter for attitude estimation of a fixed-wing UAV," in Intelligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ International Conference on, 2008.
[25] S. Sabatelli, M. Galgani, L. Fanucci and A. Rocchi, "A Double-Stage Kalman Filter for Orientation Tracking With an Integrated Processor in 9-D IMU," IEEE Transactions on Instrumentation and Measurement, pp. 590-598, 2013.
[26] S. O. H. Madgwick, A. J. L. Harrison and R. Vaidyanathan, "Estimation of IMU and MARG orientation using a gradient descent algorithm," in Rehabilitation Robotics (ICORR), 2011 IEEE International Conference on, 2011.
[27] W. R. Hamilton, "On quaternions; or on a new system of imaginaries in Algebra," London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, pp. 489-495, Jul. 1844.
[28] R. Corporation, "Approval Sheet," Raytac Corporation, 22 05 2017. [Online]. Available: http://www.raytac.com/download/MDBT42/MDBT42Q%20spec-Version%20C.pdf.
[29] "Advanced hard and soft iron magnetometer calibration for dummies," 1 6 2014. [Online]. Available: http://diydrones.com/profiles/blogs/advanced-hard-and-soft-iron-magnetometer-calibration-for-dummies.
[30] N. SEMICONDUCTOR, "BLE Relay Example," 10 Mar. 2017. [Online]. Available: https://infocenter.nordicsemi.com/index.jsp?topic=%2Fcom.nordic.infocenter.sdk51.v10.0.0%2Fble_sdk_app_rscs_relay.html.
[31] "GATT Descriptors," Bluetooth SIG, Inc., [Online]. Available: https://www.bluetooth.com/specifications/gatt/descriptors.
[32] "Client Characteristic Configuration," Bluetooth SIG, Inc., [Online]. Available: https://www.bluetooth.com/specifications/gatt/viewer?attributeXmlFile=org.bluetooth.descriptor.gatt.client_characteristic_configuration.xml.
[33] x-io Technologies, "x-IMU-SPECIFICATIONS," [Online]. Available: http://x-io.co.uk/x-imu/. [Accessed 24 8 2017].
[34] K. Lebe, P. Boiss, M. Hame and C. Duva, "Inertial measures of motion for clinical biomechanics: comparative assessment of accuracy under controlled conditions - effect of velocity.," PLoS ONE, vol. 8, no. 11, p. e79945, Nov. 2013.

QR CODE