簡易檢索 / 詳目顯示

研究生: 楊之涵
Chih-Han Yang
論文名稱: 四苯乙烯與苯基 咔唑 之合成及性質鑑定
Synthesis and Characterization of Tetraphenylethene and Carbazole Derivatives
指導教授: 游進陽
Chin-Yang Yu
口試委員: 崛江正樹
Masaki Horie
陳志堅
Jyh-Chien Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 140
中文關鍵詞: 四苯乙烯咔唑聚集誘導發光星型結構化合物
外文關鍵詞: tetraphenylethene, carbazole, aggregation induced emission, star shaped compounds
相關次數: 點閱:252下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本篇主要探討四苯乙烯與苯基咔唑之合成和性質。四苯乙基分子與其衍生物具有聚集誘導發光效應,作為固體材料時可發出強烈螢光;咔唑分子與其衍生物具有良好的熱穩定性及電洞傳導性,但在固體材料時受限於聚集導致螢光焠滅。利用鈴木耦合反應合成以四苯乙烯為中心、苯基咔唑作為修飾星形結構分子,並且比較不同位置之苯基咔唑及氟化苯基咔唑對目標產物之各項性質差異及爆裂物檢測。在稀釋溶液狀態下,四種目標產物只發出微弱螢光甚至不發光;而在高濃度聚集狀下(水比例高於 60 % 時)或是固體狀態下則發出強烈螢光。因氟原子之影響,含氟之產物之量子產率均高於不含氟之產物,此外,不同位置苯基咔唑之電子密度影響亦對電化學性質造成差異。四種目標產物均對苦味酸、2,4-硝基甲苯和2,6-硝基甲苯之檢測有極好的靈敏度,在爆裂物濃度僅在 5×10-7 M時即可大幅降螢光強度。


This thesis presents the synthesis and characterization of tetraphenylethene and carbazole derivatives. Tetraphenylethene and its derivatives feature aggregation-induced emission. Carbazole and its derivatives exhibit great thermal stability and hole-transporting property, while suffers from aggregation-caused quenching in solid state. Four star-shaped compounds containing tetraphenylethene as a core and phenyl carbazole as arms were synthesized through palladium-catalyzed Suzuki-Miyaura coupling reaction. The optical, electronic and electrochemical properties as well as explosive detection of four compounds have been investigated. In dilute solution, all compounds barely emit. While, in high concentration (water fraction up to 60 %) or in the film, they exhibit strong emission. The photoluminescence quantum yields of fluorine contained compounds are higher than non-fluorine contained ones. In addition, different electron density distribution of phenyl carbazole led to the differences of electrochemical properties. All compounds show great thermal stability. All compounds displayed remarkable sensitivity for detecting PA, 2,4-DNT and 2,6-DNT with superamplification effects that dramatically lower fluorescence intensity in 5×10-7 M.

Abstract I 中文摘要 II Acknowledgements III Table of Content IV Ch 1. Introduction 2 1.1 Fluorescence 3 1.1.1 Luminescence 3 1.1.2 Electron transition 3 1.1.3 Fluorescence sensor 5 1.2 Aggregation caused quenching 6 1.3 Aggregation induced emission 9 1.4 Explosive detection 11 1.5 Tetraphenylethene 13 1.5.1 Tetraphenylethene and its derivatives 13 1.6 Carbazole and its derivatives 16 1.7 Star-shaped structure 21 1.8 Fluorination 23 1.9 Aim of project 27 1.10 References 27 Ch 2. Synthesis and characterization 31 2.1 Synthetic routes 31 2.2 Synthesis and characterization of TPE derivatives 33 2.2.1 Synthesis of TPE derivatives 33 2.3 Synthesis and characterization of carbazole derivatives 36 2.3.1 Synthesis of carbazole derivatives 4~6 36 2.3.2 Synthesis of carbazole derivatives 7~9 40 2.3.3 Synthesis of carbazole derivatives 10~12 43 2.4 Synthesis of compounds 14~17 by Suzuki-Miyaura coupling 50 2.5 Experimental 57 2.5.1 Materials and instrumentation 57 2.5.2 Synthesis of 1,1,2,2-tetraphenylethene (TPE) “1” 58 2.5.3 Synthesis of 1,1,2,2-tetrakis(4-bromophenyl)ethane “2” 59 2.5.4 Synthesis of 1,1,2,2-tetrakis(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)ethane (3) 59 2.5.5 Synthesis of 9-phenyl-9H-carbazole “4” 61 2.5.6 Synthesis of 3-bromo-9-phenyl-9H-carbazole “5” 61 2.5.7 Synthesis of 9-phenyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-9H-carbazole “6” 62 2.5.8 Synthesis of 4'-bromo-2-nitro-1,1'-biphenyl “7” 63 2.5.9 Synthesis of 2-bromo-9H-carbazole “8” 64 2.5.10 Synthesis of 2-bromo-9-phenyl-9H-carbazole “9” 64 2.5.11 Synthesis of 3-bromo-9H-carbazole “10” 65 2.5.12 Synthesis of 3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-9H-carbazole “11” 66 2.5.13 Synthesis of 2-bromo-9-(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)-9H-carbazole “12” 67 2.5.14 Synthesis of 9-(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-9H-carbazole “13” 67 2.5.15 Synthesis of 1,1,2,2-tetrakis(4-(9-phenyl-9H-carbazol-2-yl)phenyl)ethene “14” 68 2.5.16 Synthesis of 1,1,2,2-tetrakis(4-(9-phenyl-9H-carbazol-3-yl)phenyl)ethene “15” 70 2.5.17 Synthesis of 1,1,2,2-tetrakis(4-(9-(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)-9H-carbazol-2-yl)phenyl)ethane “16” 71 2.5.18 Synthesis of 1,1,2,2-tetrakis(4-(9-(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)-9H-carbazol-3-yl)phenyl)ethane “17” 72 2.6 References 73 Ch 3. Optical, electronic, and electrochemical properties and explosive detection 75 3.1 Optical properties of 14-17 76 3.2 Electrochemical properties 82 3.3 Explosive detection 84 3.4 References 91 Ch 4. Conclusion 93 Appendix 94

[1] J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Springer.
[2] G. Y. Li, and K. L. Han, Wiley Interdisciplinary Reviews: Computational Molecular Science, 2018, 8, e1351.
[3] J. S. Wu, W. M. Liu, J. C. Ge, H. G. Zhang, and P. F. Wang, Chemical Society Reviews, 2011, 40, 3483-3495.
[4] S. M. Borisov, and O. S. Wolfbeis, Chemical Reviews, 2008, 108, 423-461.
[5] Y. Hong, J. W. Y. Lam, and B. Z. Tang, Chemical Society Reviews, 2011, 40, 5361-5388.
[6] R. B. Thompson, Fluorescence Sensors and Biosensors, ed. 2006.
[7] C. W. Wang, and S. A. Vanslyke, Applied Physics Letter, 1987, 51, 913-915.
[8] C. D. Geddes, and J. R. Lakopwicz, Advanced Concepts in Fluorescence Sensing, ed. Springer, 2005.
[9] E. A. Jares-Erijma, and T. M. Jovin, Nature Biotechnology, 2003, 21, 1387-1395.
[10] H. Saigusa, and E. C. Lim, Journal of Physical Chemistry, 1995, 99, 15738-15747.
[11] J. Wang, Y. F. Zhao, C. D. Dou, H. Sun, P. Xu, K. Q. Ye, J. Y. Zhang, S. M. Jiang, F. Li, and Y. Wang, Journal of Physical Chemistry B, 2007, 111, 5082-5089.
[12] S. Hecht, and J. M. J. Frechet, Angewandte Chemie International Edition, 2001, 40, 74-91.
[13] B. T. Nguyen, J. E. Gautrot, C. Ji, P. L. Brunner, M. T. Nguyen, and X. X. Zhu, Langmuir, 2006, 22, 4799-4803.
[14] L. H. Chen, S. Xu, D. McBranch, and D. Whitten, Journal of the American Chemistry Society, 2000, 122, 9302-9303.
[15] P. N. Taylor, M. J. O’Connell, L. A. McNeill, M. J. Hall, R. T. Aplin, and H. L. Anderson, Angewandte Chemie International Edition, 2000, 39, 3456-3460.
[16] Y. N. Hong, J. W. Lam, and B. Z. Tang, Chemical Communications, 2009, 29, 4332-4353.
[17] H. Wang, E. Zhao, J. W. Y. Lam, and B. Z. Tang, Materials Today, 2015. 18, 365-377.
[18] J. Mei, N. L. Leung, R. T. Kwok, J. W. Lam, and B. Z. Tang, Chemical Reviews, 2015. 115, 11718-11940.
[19] A. A. Baranova, and K.O. Khokhlov, Journal of Physics: Conference Series, 2014, 552, 012034.
[20] Y. Salinas, R. M. Manez, M. D. Marcos, F. Sancenon, A.M. Costero, M. Parra, and S. Gil, Chemical Society Reviews, 2012, 41, 1261-1296.
[21] X, C. Sun, Y. Wang, and Y. Lei, Chemical Society Reviews, 2015, 44, 8019-8061.
[22] Z. J. Zhao, J. W. Y. Lam, and B. Z. Tang, Journal of Materials Chemistry, 2012, 22, 23726-23740.
[23] N. Jiang, Y. J. Wang, A. J. Qin, J. Z. Sun, and B. Z. Tang, Chinese Chemical Letters, 2019, 30, 143-148.
[24] Z. J. Zhao, S. M. Chen, J. W. Y. Lam, P. Lu, Y. C. Zhong, K. S. Wong, H. S. Kwok, and B. Z. Tang, Chemical Communications, 2010, 46, 2221-2223.
[25] Q. L. Zhao, X. A. Zhang, Q. Wei, J. Wang, X. Y. Shen, A. Qin, J. Z. Sun, and B. Z. Tang, Chemical Communications, 2012, 48, 11671-11673.
[26] Z. Chang, Y. Jiang, B. He, J. Chen, Z. Yang, P. Lu, H. S. Kwok, Z. Zhao, H. Qiu, and B. Z. Tang, Chemical Communications, 2013, 49, 594-596.
[27] Y. Shirota, and H. Kageyama, Chemical Reviews, 2007, 107, 953-1010.
[28] R. M. Adhikari, B. K. Shah, S. S. Palayangoda, and D. C. Neckers, Langmuir 2009, 25, 2402-2406.
[29] Z. J. Zhao, C. Y. K. Chan, S. M. Chen, C. M. Deng, J. W. Y. Lam, C. K. W. Jim, Y. N. Hong, P. Lu, Z. F. Chang, X. P. Chen, P. Lu, H. S. Kwok, H. Y. Qiu, and B. Z. Tang, Journal of Materials Chemistry, 2012, 22, 4527-4534.
[30] H. P. Shi, J. W. Yang, X. Q. Dong, X. H. Wu, P. H. Zhou, F. G. Cheng, and M. M. F. Choi, RSC Advances, 2014, 4, 19418-19421.
[31] F. Zhao, Z. Chen, C. B. Fan, G. Liu, and S. Z. Pu, Dyes and Pigments, 2019, 164, 390-397.
[32] W. Y. Dong, Z. H. Ma, P. Chen, and Q. Duan, Materials Letters, 2019, 236, 480-482.
[33] S. W. Kang, H. C. Jung, H. Y. Lee, S. J. Lee, M. N. Jung, J. H. Lee, Y. C. Kim, and J. W. Park, Dyes and Pigments, 2018, 156, 369-378.
[34] A. L. Kanibolotsky, I. F. Perepichka, and P. J. Skabara, Chemical Society Reviews, 2010, 39, 2695-2728.
[35] T. Jarosz, M. Lapkowski, and P. Ledwon, Macromolecular Rapid Communications, 2014, 35, 1006-1032.
[36] L. Chen, Y. B. Jiang, H. Nie, R. R. Hu, H. S. Kwok, F. Huang, A. J. Qin, Z. J. Zhao, and B. Z. Tang, ACS Applied Materials & Interfaces, 2014, 6, 17215-17225.
[37] L. Chen, C. Y. Zhang, G. W. Lin, H. Nie, W. W. Luo, Z. Y. Zhuang, S. Y. Ding, R. R. Hu, S. J. Su, F. Huang, A. J. Qin, Z. J. Zhao, and B.Z. Tang, Journal of Materials Chemistry C, 2016, 4, 2775-2783.
[38] T. V. Rybalova, and I. Y. Bagryanskaya, Journal of Structural Chemistry, 2009, 50, 741-753.
[39] P. Kirsch, and M. Bemer, Angewandte Chemie, 2000, 112, 4384-4405.
[40] P. Kirsch, and M. Bemer, Angewandte Chemie, 2000, 39, 4216-4235.
[41] B. M. Medina, and J. Gierschner, The Journal of Physical Chemistry Letters, 2017, 8, 91-101.
[42] J. Marten, W. Seichter, E. Weber, and U. Böhme, CrystEngComm, 2008, 10, 541.
[43] H. Zhang, Y. Nie, J. L. Miao, D. Q. Zhang, Y. X. Li, G. Liu, G. N. Sun, and X. C. Jiang, Journal of Materials Chemistry C, 2019, 7, 3306-3314.
[44] J. X. Zhou, X. S. Luo, X. X. Liu, Y. Qiao, P. F. Wang, D. Mecerreyes, N. Bogliotti, S. L. Chen, and M. H. Huang, Journal of Materials Chemistry A, 2018, 6, 5608-5612.
[45] S. Dalapati, E. Jin, M. Addicoat, T. Heine, and D. Jiang, Journal of American Chemistry Society, 2016, 138, 5797-5800.
[46] J. Huang, X. Yang, J. Y. Wang, C. Zhong, L. Wang, J. G. Qin, and Z. Li, Journal of Material Chemistry, 2012, 22, 2478-2484.
[47] S. W. Kang, H. C. Jung, H. Y. Lee, S. J. Lee, M. N. Jung, J. H. Lee, Y. C. Kim, and J. W. Park, Dyes and Pigments, 2018, 156, 369-378.
[48] M. Majchrzak, M. Grzelak, and B. Marciniec, Organic & Biomolecular Chemistry, 2016, 14, 9406-9415.
[49] M. H. Chua, H. Zhou, T. T. Lin, J. Wu, and J. W. Xu, Journal of Polymer Science Part A: Polymer Chemistry, 2017, 55, 672-681.
[50] L. Wang, E. H. Ji, N. Liu, and B. Dai, Synthesis, 2016, 48, 737-750.
[51] Z. F. Chang, Y. B. Jiang, B. R. He, J. Chen, Z. Y. Yang, P. Lu, H. S. Kwok, Z. J. Zhao, H. Y. Qiu, and B. Z. Tang, Chemical Communications, 2013, 49, 594-596.
[52] S. H. Chen, Y. J. Li, W. L. Yang, N. Chen, H. B. Liu, and Y. L. Li, The Journal of Physical Chemistry C, 2010, 114, 15109-15115.
[53] R. R. Hu, E. Lager, A. Aguilar, J. Z. Liu, J. W. Y. Lam, H. H. Y. Sung, I. D. Williams, Y. C. Zhong, K. S. Wong, E. P. Cabrera, and B. Z. Tang, The Journal of Physical Chemistry C, 2009, 113, 15845-15853.
[54] C. Y. Yu, C. C. Hsu, and H. C. Weng, RSC Advances, 2018, 8, 12619-12627.
[55] Y. N. Hong, J. W. Lam, and B. Z. Tang, Chemical Communications, 2009, 29, 4332-4353.
[56] S. W. Kang, H. C. Jung, H. Y. Lee, S. J. Lee, M. N. Jung, J. H. Lee, Y. C. Kim, and J. W. Park, Dyes and Pigments, 2018, 156, 369-378.
[57] T. S. Reddy, S. Lee, and M. S. Choi, Dyes and Pigments, 2019, 168, 49-58.
[58] K. W. Kim, G. H. Kim, S. H. Kwon, H. I. Yoon, J. E. Son, and J. H. Choi, Dyes and Pigments, 2018, 158, 353-361.
[59] H. Zhang, Y. Nie, J. L. Miao, D. Q. Zhang, Y. X. Li, G. N. Liu, G. X. Sun, and X. C. Jiang, Journal of Materials Chemistry C, 2019, 7, 3306-3314.
[60] Y. G. Park, S. K. Kim, J. H. Lee, D. H. Jung, C. C. Wu, and J. W. Park, Organic Electronics, 2010, 11, 864-871.
[61] B. Dandrade, S. Datta, S. Forrest, P. Djurovich, E. Polikarpov, and M. Thompson, Organic Electronics, 2005, 6, 11-20.
[62] X. C. Sun, Y. Wang, and Y. Lei, Chemical Society Reviews, 2015, 44, 8019-8061.
[63] A. J. Qin, L. Tang, J. W. Y. Lam, C. K. W. Jim, Y. Yu, H. Zhao, J. Z. Sun, and B. Z. Tang, Advanced Functional Materials, 2009, 19, 1891-1900.
[64] P. Lu, J. W. Y. Lam, J. Z. Liu, C. K. W. Jim, W. Z. Yuan, N. Xie, Y. C. Zhong, Q. Hu, K. S. Wong, K. K. L. Cheuk, and B. Z. Tang, Macromolecular Rapid Communications, 2010, 31, 834-839.
[65] J. Z. Liu, Y. C. Zhong, P. Lu, Y. N. Hong, J. W. Y. Lam, M. Faisal, Y. Yu, K. S. Wong, and B. Z. Tang, Polymer Chemistry, 2010, 1, 426-429.
[66] B. W. Xu, X. F. Wu, H. B. Li, H. Tong, and L. Wang, Macromolecules, 2011, 44, 5089-5092.
[67] V. Vij, V. Bhalla, and M. Kumar, ACS Applied Materials & Interfaces, 2013, 5, 5373-5380.
[68] A. H. Malik, S. Hussain, A. Kalita, and P.K. Iyer, ACS Applied Materials & Interfaces, 2015, 7, 26968-26976.
[69] X. C. Sun, Y. Wang, and Y. Lei, Chemical Society Reviews, 2015, 44, 8019-8061.
[70] J. Z. Liu, Y. C. Zhong, P. Lu, Y. N. Hong, J. W. Y. Lam, M. Faisal, Y. Yu, K. S. Wong, and B. Z. Tang, Polymer Chemistry, 2010, 1, 426-429.
[71] X. L. Jiang, Y. H. Liu, Y. P. Wu, L. Wang, Q. Y. Wang, G. Z. Zhu, X. L. Li, and J. Wang, RSC Advances, 2014, 4, 47357-47360.
[72] N. Venkatramaiah, C. F. Pereira, R. F. Mendes, F. A. A. Paz, and J. P. C. Tome, Analytical Chemistry, 87, 4515-4522.
[73] P. C. A. Swamy, and P. Thilagar, Chemistry: A European Journal, 2015, 21, 1-10.
[74] N. Venkatramaiah, A. D. G. Firmino, F. A. A. Paz, and J. P. C. Tome, Chemical Communications, 2014, 50, 9683-9686.

無法下載圖示 全文公開日期 2024/07/31 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE