簡易檢索 / 詳目顯示

研究生: 顏楷倫
Kai-Lun Yan
論文名稱: 模造螺旋傘齒輪設計
A STUDY ON THE MOLD OF SPIRAL BEVEL GEARS
指導教授: 石伊蓓
Yi-Pei Shih
口試委員: 蔡高岳
Kao-Yueh Tsai
郭進星
Chin-Hsing Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 95
中文關鍵詞: 螺旋傘齒輪模造齒輪齒面修整3D模型SolidWorks API
外文關鍵詞: spiral bevel gear, molded gears, flank modification, 3D model, SolidWorks API
相關次數: 點閱:268下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

螺旋傘齒輪跟直傘齒輪相比之下有著更佳的傳遞效能與低噪音等優點,因此在工業界上有更廣泛的使用。螺旋傘齒輪通常採用面銑式和面滾式等切製法來製造。而另一方面,模造製程擁有高效率以及低成本等優點,而且近幾年來精度則不斷提升,所以模造齒輪逐漸被採用在圓柱齒輪以及直傘齒輪上。模造是形容詞,模造齒輪是指以模具然後採用鑄造、粉末冶金等方式來生產,具有速度快以及成本低等優點。因為模造製程近十年來的這些進步,所以嘗試使用模造製程應用於製造螺旋傘齒輪上。然而到目前為止,國內廠商仍然缺乏模造螺旋傘齒輪的經驗。本論文主要的目的是在格里森公司的SGDH切製法(面铣式)上來建立螺旋傘齒輪的齒面數學模式。在推導齒面數學模式的基礎上,使用SolidWorks API (Application Programming Interface,應用程式介面)來自動產生螺旋傘齒輪的3D零件圖,因此將可以使用這零件圖來做模具設計。除此之外,在齒面相對修形的基礎上來改進傘齒輪對的接觸性能,而後這模型的正確性則用齒面相對修形以及齒面接觸分析來確認。


Compared with straight bevel gears, spiral bevel gears (SBGs) have been more widely used in industry due to their better transmission performance and lower noise. SBGs are generally produced by cutting methods, such as face-milling and face-hobbing methods. On the other hand, molding method takes the advantage of efficiency and low cost, and its precision is improved in recent years, molding method becomes more popular in fabricating gears, such as cylindrical gears and straight bevel gears. Moreover, due to the advances in molding technology over the last decade, this method is tried to be applied in manufacturing SBGs. However, until now, domestic manufacturers are lack of technology in molded SBGs. The main goal of this work is to establish a mathematical model of SBGs with the Gleason SGDH cutting system (Face Mill). Based on the derived tooth surfaces, a 3D model is automatically generated using SolidWorks API (Application Programming Interface). Therefore, the generated model of SBG can be used for mold design. Moreover, based on the ease off, a flank modification is proposed to improve the contact condition of the gear pair. The correctness of the model is confirmed using the ease-off and tooth contact analysis.

指導教授推薦書 I 學位考試委員會審定書 II 中文摘要 III Abstract IV 誌 謝 V 目 錄 VI 符號索引 VIII 圖索引 X 表索引 XII 第 1 章 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 1.3 文獻回顧 3 1.4 論文架構 4 第 2 章 面銑式螺旋傘齒輪齒面數學模式 5 2.1 前言 5 2.2 螺旋傘齒輪齒胚設計 6 2.3 面銑式刀盤數學模式 9 2.4 螺旋傘齒輪齒面點及其單位法向量計算 11 2.5 齒面相對修形 14 2.6 齒輪對齒面接觸分析 16 2.7 數學範例 19 2.8 小結 22 第 3 章 機械設定參數修正數學模式 23 3.1 前言 23 3.2 齒面接觸性能修正 23 3.3 大齒輪之共軛齒輪數學模式 24 3.4 機械設定參數敏感度分析 26 3.5 共軛小齒輪齒面與實際小齒輪齒面參考點法向量重合數學模式 28 3.6 數學範例 29 3.7 小結 32 第 4 章 SolidWorks API應用於模造齒輪自動建模 33 4.1 前言 33 4.2 SolidWorks API 33 4.3 軸對稱零件資料檔 35 4.4 螺旋傘齒輪零件建模 35 4.5 具大小端延伸區段之小齒輪零件建模 36 4.6 自動建模範例 38 4.7 小結 44 第 5 章 螺旋傘齒輪3D實體模型設計軟體 45 5.1 前言 45 5.2 齒胚設計和機械設定常數 45 5.3 齒面拓墣點 48 5.4 齒面相對修形和齒面接觸分析 50 5.5 齒輪強度計算 52 5.6 小齒輪齒面調整 55 5.7 小齒輪脫模干涉檢查 57 5.8 SolidWorks 3D螺旋傘齒輪建模 58 5.9 小結 61 第 6 章 結論與建議 63 6.1 結果與討論 63 6.2 建議與未來展望 64 參考文獻 65 附錄 A. 軸對稱零件檔範例 67 附錄 B. P40量測資料檔範例(MESINFO.CDS) 86 附錄 C. P40量測資料檔範例(小齒輪SOLL1.CDS) 87 附錄 D. P40量測資料檔範例(大齒輪SOLL2.CDS) 91 授權書 95

[1]董學朱,擺線齒錐齒輪及準雙曲面齒輪設計和製造,機械工業出版社,北京 (2002)。
[2]ANSI/AGMA ISO 23509-A08, Bevel and Hypoid Gear Geometry, Alexandria, VA, USA (2008).
[3]Gleason Works, Calculation Instructions — Generated Spiral Bevel Gears, Duplex–Helical Method, Including Grinding, Rochester, NY, USA (1971).
[4]Fuentes, A., Litvin, F. L., Mullins, B. R., Woods, R., and Handschuh, R. F., “Design and Stress Analysis of Low-Noise Adjusted Bearing Contact Spiral Bevel Gears,” Transactions of ASME, Journal of Mechanical Design, 124(3), pp. 524–532(2002).
[5]Litvin, F. L. ,Wang, ,A. G., and Handschuh, R. F. ,“Computerized Design and Analysis of Face-Milled, Uniform Tooth Height Spiral Bevel Gear Drives,” Transactions of ASME, Journal of Mechanical Design, 118(4) (1996).
[6]Shih, Y. P., Fong, Z. H., and Lin, C. Y., “Mathematical Model for a Universal Face- Hobbing Hypoid Gear Generator,” Transactions of ASME, Journal of Mechanical Design, Vol. 129, No. 1, pp. 38-47 (2007).
[7]Stadtfeld, H. J., Handbook of Bevel and Hypoid Gears, The Gleason Works, Rochester, NY, USA (1993).
[8]Shih, Y. P., and Fong, Z. H., “Flank Modification Methodology for Face-Hobbing Hypoid Gears Based on Ease-Off Topography,” Transactions of ASME, Journal of Mechanical Design, 129(12), pp. 1294–1302 (2007).
[9]Fong, Z. H., Tsay, C. B., “Tooth Contact Analysis of Spiral Bevel Gears,” 中國機械工程學刊, 第十一卷第六期, pp. 538-544 (1990).
[10]Litvin, F. L., Fuentes, A., Gear Geometry and Applied Theory, 2nd edition. Cambridge University Press, NY, (2004).
[11]Litvin, F. L., and Zhang, Y., “Local Synthesis and Tooth Contact Analysis of Face-Milled Spiral Bevel Gear,” NASA Technical Report No. 90–C–028, Washington, D.C. (1991).
[12]Zhang Y, Litvin, F. L., and Handschuh, R. F., “Computerized Design of Low-Noise Face-Milled Spiral Bevel Gears,” Mech. Mach. Theory, 30(8), pp. 1171–1178(1995).
[13]Fong, Z. H., and Tsay, C. B., “Kinematical Optimization of the Spiral Bevel Gears,” Transactions of ASME, Journal of Mechanical Design, 114(3), pp. 498–506(1992).
[14]ASNI/AGMA ISO 2003-B97, Rating the Pitting Resistance and Bending Strength of Generated Straight Bevel, Zerol Bevel, and Spiral Bevel Gear Teeth, Alexandria VA (2006).
[15]Sekercioglu, T., and Kovan, V., “Pitting Failure of Truck Spiral Bevel Gear ,” Engineering Failure Analysis, pp.614-619 (2008).
[16]葉修梓、陳超祥編,SolidWorks 高級教程-二次開發與API,機械工業出版社,北京,2008。
[17]石伊蓓,基於SolidWorks API之螺旋傘齒輪三維建模方法研究,第十二屆全國機構與機器設計學術研討會,國立中正大學,嘉義,2009。
[18]Klingelnberg, P40 Operating Instructions, Bevel Gear Software, Version 03-000en.
[19]Gleason Works, CAGE4Win Software Customer/Dealer Training Center, Rochester, NY, USA (2004).
[20]Klingelnberg, KIMoS 5 Basic Training, Bevel Gear Software.
[21]大新資訊,OpenGL超級手冊第二版,碁峰資訊,台北市,2000。

QR CODE