簡易檢索 / 詳目顯示

研究生: 洪莛妤
Ting-Yu Hong
論文名稱: 隨機衝擊下自我恢復力遞減之可維修系統最佳置換策略
Optimal Replacement Time for Repairable Systems with Decreasing Resilience Capability under Random Shocks
指導教授: 葉瑞徽
Ruey-Huei Yeh
口試委員: 林希偉
Shi-Woei Lin
曾世賢
Shih-Hsien Tseng
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業管理系
Department of Industrial Management
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 104
中文關鍵詞: 自我恢復力隨機衝擊可維修系統小修置換策略失效率
外文關鍵詞: resilience, random shocks, repairable systems, minimal repair, replacement policy, failure rate
相關次數: 點閱:218下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著科技持續發展與環保概念提升,政府與業者對於循環經濟概念愈發重視,積極研發新產品或技術來降低系統失效頻率。然而,在現實生活中系統時常遭受內部退化與外在隨機衝擊加速系統退化速率,致使系統效能大幅降低,此時系統具備自我恢復能力將可大幅延長系統使用時間。目前自我恢復力概念已被廣泛運用於不同領域,如化學材料、建築或交通運輸等領域。然而,回顧過往可靠度領域的文獻只談及當系統具固定恢復力之置換策略,反而鮮少提及具自我恢復力且恢復力遞減系統之相關置換策略與價值,因此本研究探討在系統具自我恢復力且恢復能力隨衝擊次數遞減情況下尋找最佳置換策略,來貼合現實使用情況。根據分析結果得知,在最低期望總成本的目標下,影響系統最佳置換時間的主要因素為受小修成本、置換成本及自我恢復能力,因此決策者在制定相關策略時,應考量各樣因素並取得平衡,藉以尋求最佳置換策略。


    Due to technological advancements and the increasing emphasis on environmental protection, both the government and businesses have become more interested in the Circular Economy (CE). To reduce the number of system failures, new techniques and products are being actively developed. However, systems are prone to both internal deterioration and external random shocks that can cause a rapid decline in production capacity. Therefore, if a system has resilience capability, its lifespan can be extended. Currently, resilient systems are being utilized in various fields, such as the chemical, building, transportation industries, and so on. Past literature has only considered the concept of fixed recovery amounts for systems under random shocks and the value of resilience capability without considering the concept of repairable systems with decreasing resilience capability. Therefore, this thesis explores the optimal replacement policy for repairable systems with decreasing resilience capability under random shocks fit practical usage situations. According to the analysis results, the main factors influencing the optimal replacement policy are the costs of minimal repair, resilience capability, and replacement costs to minimize the expected total cost rate. Therefore, decision-makers should consider balancing minimal repair and replacement costs when formulating relevant strategies to seek the optimal replacement policy.

    摘要 I ABSTRACT II 誌謝 III 目錄 IV 圖目錄 VI 表目錄 VIII 第1章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 1 1.3 研究流程 3 第2章 文獻探討 4 2.1 衝擊失效過程 4 2.2 系統維修策略 5 2.3 置換策略 8 2.4 自我恢復 9 第3章 數學模式 11 3.1 自我恢復系統描述 11 3.2 符號定義與模型假設 16 3.3 自我恢復系統退化模式 18 3.3.1 固定恢復量之退化模式 19 3.3.2 恢復量等比例遞減之退化模式 20 3.3.3 固定恢復比例之退化模式 21 3.3.4 恢復比例倍數遞減之退化模式 22 3.3.5 恢復比例指數遞減之退化模式 23 3.4 自我恢復系統期望成本率模式 23 3.4.1 固定恢復量系統之成本模式 24 3.4.2 恢復量等比例遞減系統之成本模式 26 3.4.3 固定恢復比例系統之成本模式 27 3.4.4 恢復比例倍數遞減系統之成本模式 29 3.4.5 恢復比例指數遞減系統之成本模式 31 3.5 自我恢復系統之最佳置換時間 32 第4章 韋伯壽命分配下之最佳置換時間 34 4.1 固定恢復量系統之最佳置換時間 34 4.2 恢復量等比例遞減之最佳置換時間 36 4.3 固定恢復比例系統之最佳置換時間 37 4.4 恢復比例倍數遞減系統之最佳置換時間 38 4.5 恢復比例指數遞減系統之最佳置換時間 40 第5章 數值分析 42 5.1 參數設定 42 5.2 恢復量系統之最佳置換時間 43 5.3 恢復比例系統之最佳置換時間 45 5.4 敏感度分析 48 5.4.1 形狀參數變動下對最佳置換策略之影響 48 5.4.2 衝擊到達速率變動下對最佳置換策略之影響 53 5.4.3 衝擊量變動下對最佳置換策略之影響 56 5.4.4 小修成本變動下對最佳置換策略之影響 58 5.4.5 置換成本變動下對最佳置換策略之影響 62 第6章 結論與未來研究方向 65 6.1 結論 65 6.2 未來研究方向 67 參考文獻 69 附錄 72 附錄1 72 附錄2 77 附錄3 81 附錄4 85 附錄5 90

    英文文獻:
    [1] Merryn, H. G., F. Charnley, and E. O. Adriana, 2021,“ Self-healing materials: A pathway to immortal products or a risk to circular economy systems?,” Journal of Cleaner Production, pp. 128-193.
    [2] Holling, S. C., 1973,“ Resilience and Stability of Ecological Systems,” Annual Review of Ecology and Systematics, Vol. 4, pp. 1-23.
    [3] Yıldırım, G., O. K. Keskin, S. B. Keskin, M. Sahmaran, and M. Lachemi, 2015,“ A review of intrinsic self-healing capability of engineered cementitious composites: Recovery of transport and mechanical properties,” Construction and Building Materials, Vol.101, pp. 10-21.
    [4] Tan, P., H. Wang, F. Xiao, X. Lu, W. Shang, X. Deng, H. Song, Z. Xu, J. Cao, T. Gan, B. Wang, and X. Zhou, 2022,“ Solution-processable, soft, self-adhesive, and conductive polymer composites for soft electronics,” Nature Communications, DOI:10.1038/s41467-022-28027-y.
    [5] Wang, G. J., and Y. L. Zhang, 2013,“ Optimal repair–replacement policies for a system with two types of failures,” European Journal of Operational Research, Vol. 226, No. 3, pp. 500-506.
    [6] Caballe, N. C., I. T. Castro, C. J. Pérez, and J. M. Lanza-Gutiérrez, 2015,“ A condition-based maintenance of a dependent degradation-threshold-shock model in a system with multiple degradation processes,” Reliability Engineering & System Safety, Vol. 134, pp. 98-109.
    [7] Peng, H., Q. Feng, and D. W. Coit, 2010,“ Reliability and maintenance modeling for systems subject to multiple dependent competing failure processes,” IIE Transactions, Vol. 43, No. 1, pp. 12-22.
    [8] Keedy, E., and Q. Feng, 2012,“ A physics-of-failure based reliability and maintenance modeling framework for stent deployment and operation,” Reliability Engineering & System Safety, 103, pp. 94-101.
    [9] Song, S., D. W. Coit, and Q. Feng, 2016,“ Reliability analysis of multiple-component series systems subject to hard and soft failures with dependent shock effects,” IEEE Transactions, Vol. 48, No. 8, pp. 720-735.
    [10] Wang, Z., H. Z. Huang, Y. Li, and N. C. Xiao, 2011,“ An Approach to Reliability Assessment Under Degradation and Shock Process,” IEEE Transactions on Reliability, Vol. 60, No. 4, pp. 852-863.
    [11] Qiu, Q., and L. Cui, 2019,“ Optimal mission abort policy for systems subject to random shocks based on virtual age process,” Reliability Engineering & System Safety, Vol. 189, pp. 11-20.
    [12] Wang, H., 2002,“ A survey of maintenance policies of deteriorating systems,” European Journal of Operational Research, Vol. 139, No. 3, pp. 469-489.
    [13] Tanwar, M., R. N. Rai, and N. Bolia, 2014,“ Imperfect repair modeling using Kijima type generalized renewal process,” Reliability Engineering & System Safety, Vol. 124, pp. 24-31.
    [14] Chang, C. C., 2014,“ Optimum preventive maintenance policies for systems subject to random working times, replacement, and minimal repair,” Computers & Industrial Engineering, Vol. 67, pp. 185-194.
    [15] Lim, J. H., J. Qu, and M. J. Zuo, 2016,“ Age replacement policy based on imperfect repair with random probability,” Reliability Engineering & System Safety, Vol. 149, pp. 24-33.
    [16] Yang, L., Z. S. Ye, C. G. Lee, S. F. Yang, and R. Peng, 2019,“ A two-phase preventive maintenance policy considering imperfect repair and postponed replacement,” European Journal of Operational Research, Vol. 274, No. 3, pp. 966-977.
    [17] Zhang, Y. L., R. C. M. Yam, and M. J. Zuo, 2002,“ Optimal replacement policy for a multistate repairable system,” Journal of the Operational Research Society, Vol. 53, No. 3, pp. 336-341.
    [18] Badia, F. G., M. D. Berrade, J. H. Cha, and H. Lee, 2018,“ Optimal replacement policy under a general failure and repair model: Minimal versus worse than old repair,” Reliability Engineering & System Safety, Vol. 180, pp.362-372.
    [19] Zhang, X., H. Huang, and Q. Yang, 2013,“ Real-time implementation of a self-recovery EMG pattern recognition interface for artificial arms,” IEEE Xplore, DOI:10.1109/EMBC.2013.6610901.
    [20] Terryn; S., G. Mathijssen; J. Brancart; T. Verstraten; G. V. Assche; and B. Vanderborght, 2016,“ Toward Self-Healing Actuators: A Preliminary Concept,” IEEE Transactions on Robotics, Vol. 32, No. 3, pp.736-743.
    [21] Liu, H., R. H. Yeh, and B. Cai, 2017,“ Reliability modeling for dependent competing failure processes of damage self-healing systems,” Computers & Industrial Engineering, Vol. 105, pp. 55-62.
    [22] Chiang, M. H., T. Y. Hong and R. H. Yeh, 2022,“ Cost Efficiency of Resilience Capability for Webibull life-time Products under Random Shocks,”. [Paper presentation]. Poster session presented at the 10th Asia-Pacific International Symposium on Advanced Reliability and Maintenance Modeling, Hsinchu, Taiwan.
    中文文獻:
    [23] 翁御庭,在不同隨機衝擊量下系統之最佳置換時程,國立臺灣科技大學碩士論文,2020。
    [24] 黃馨玫,在隨機衝擊下之可自我恢復線性退化系統之最佳置換時機,國立臺灣科技大學碩士論文,2021。
    [25] 許子揚,隨機衝擊下具自我恢復力退化系統之最佳置換門檻,國立臺灣科技大學碩士論文,2022。
    [26] 江旻軒,具自我恢復力之可維修產品在隨機衝擊下之最佳置換時程,國立臺灣科技大學碩士論文,2022。

    QR CODE