簡易檢索 / 詳目顯示

研究生: 陳昱仁
Yu Jen Chen
論文名稱: 新型無轉軸偵測元件直接轉矩控制 同步磁阻電動機驅動系統之研製
Design and Implementation of Novel Sensorless Direct Torque Control for a Synchronous Reluctance Motor Drive System
指導教授: 劉添華
Tian-Hau Liu
口試委員: 徐國鎧
Kuo-Kai Shyu
林法正
Faa-Jeng Lin
劉益華
Yi-Hua Liu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 125
中文關鍵詞: 同步磁阻電動機無轉軸角/速度偵測元件適應性步階回歸控制器數位訊號處理器
外文關鍵詞: synchronous reluctance motor, adaptive backstepping control, sensorless, digital signal processor
相關次數: 點閱:214下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文提出一新型無轉軸偵測元件直接轉矩控制的同步磁阻電動機驅動系統。文中設計一適應性步階回歸控制器,以得良好的暫態響應及加載響應。首先,探討電動機的結構、特性、及數學模式。其次,提出無轉軸偵測元件的直接轉矩控制。經由此一控制方法,可得到電動機的最大轉矩。然後,研究以適應性步階回歸控制器來改善驅動系統的暫態及加載響應。
文中以TMS320F28335數位訊號處理器作為控制核心,用以執行控制及估測法則,故硬體相當簡單。實驗結果說明本文所提驅動系統的正確性及可行性。


This thesis proposes a novel sensorless direct torque control for a synchronous reluctance drive system. An adaptive backstepping controller is designed to achieve good transient responses and load disturbance responses. First, the configuration, characteristics and mathematical model of the motor are discussed. Then, a sensorless direct torque control is proposed. By using this method, the drive system can achieve its maximum torque. Next, an adaptive backstepping controller is proposed to improve the performance of the drive system, including transient responses and load disturbance rejection responses.
A digital signal processor TMS320F28335, is used as the control unit to execute the control algorithm and estimating algorithm. As a results, the hardware is very simple. Experimental results validate the correctness and feasibility of the proposed drive system.

中文摘要 I 英文摘要 II 目錄 III 圖目錄 V 表目錄 VIII 符號索引 IX 第一章 緒論 1 1.1 動機 1 1.2 文獻回顧 3 1.3 目的 6 1.4 大綱 7 第二章 同步磁阻電動機 8 2.1 簡介 8 2.2 結構及沿革 11 2.3 數學模式 14 第三章 新型直接轉矩控制 22 3.1 簡介 22 3.2 新型直接轉矩控制 23 3.2.1簡介 23 3.2.2直接轉矩控制原理 24 3.2.3新型直接轉矩控制法則 31 3.3 轉矩角度估測 41 3.4 空間向量脈波寬度調變策略 46 3.5 無轉軸角/速度偵測元件系統 49 3.5.1 簡介 49 3.5.2 轉軸角/速度估測法則 50 3.5.3閉迴路驅動系統 53 第四章 控制器設計 55 4.1 簡介 55 4.2 適應性步階回歸控制器 56 4.2.1簡介 56 4.2.2速度控制器設計 57 第五章 系統研製 70 5.1 簡介 70 5.2 硬體電路製作 71 5.2.1變頻器與驅動電路 71 5.2.2偵測電路 73 5.3 軟體程式設計 75 5.3.1簡介 75 5.3.2數位訊號處理器 77 5.3.3軟體程式 80 第六章 實測結果 85 6.1 簡介 85 6.2 實測結果 87 第七章 結論與建議 115 參考文獻 116 作者簡介 125

[1] B. K. Bose, Modern Power Electronics and AC Drives, Prentice-Hall, 2002.
[2] P. C. Sen, “Electric motor drives and control - past, present, and future,” IEEE Transactions on Industrial Electronics, vol. 37, no. 6, pp. 562-575, Dec. 1990.
[3] T. A. Lipo, “Recent progress in the development in solid-state AC motor drives,” IEEE Transaction on Power Electronics, vol. 3, no. 2, pp. 105-117, Apr. 1988.
[4] L. H. Hoang, “Microprocessors and digital IC's for motion control,” IEEE Transaction on Power Electronics, vol. 16, no. 4, pp. 527-534, Aug. 1994.
[5] G. Kaplan, “Industrial electronics [technology analysis and forecast], ” IEEE Spectrum, vol. 34, no. 1, pp. 79-83, 1997.
[6] B. A. Welchko, T. A. Lipo, T. M. Jahns, and S. E. Schulz, “Fault tolerant three-phase AC motor drive topologies: a comparison of features, cost, and limitations,” IEEE Transaction on Power Electronics, vol. 19, no. 4, pp. 1108-1116, July 2004.
[7] J. F. Fuchsloch, W. R. Finley, and R. W. Walter, “The next generation motor," IEEE Industry Applications Magazine, vol. 14, pp. 37-43, Jan./Feb. 2008.
[8] M. Comanescu and L. Xu, “An improved flux observer based on PLL frequency estimator for sensorless vector control of induction motors," IEEE Transactions on Industrial Electronics, vol. 53, no. 4, pp. 50-56, Feb. 2006
[9] A. Nasiri, “Full digital current control of permanent magnet synchronous motors for vehicular applications,” IEEE Transactions on Vehicular Technology, vol. 56, no. 4, pp. 1531-1537, July 2007.
[10] L. S. Xuefang, F. Morel, A. M. Llor, B. Allard, and J. M. Retif, “Implementation of hybrid control for motor drives,” IEEE Transactions on Industrial Electronics, vol. 54, no. 4, pp. 1946-1952, Aug. 2007.
[11] A. Consoli, G. Scarcella, G. Scelba, A. Testa, and D. A. Triolo, “Sensorless rotor position estimation in synchronous reluctance motors exploiting a flux deviation approach,” IEEE Transactions on Industrial Applications, vol. 43, no. 5, pp. 1266-1273, Sep./Oct. 2007.
[12] P. Guglielmi, M. Pastorelli, G. Pellegrino, and A. Vagati, “Position - sensorless control of permanent-magnet-assisted synchronous reluctance motor,” IEEE Transactions on Industrial Applications, vol. 40, no. 2, pp. 615-622, Mar./Apr. 2004.
[13] A. Consoli, F. Russo, G. Scarcella, and A. Testa, “Low- and zero-speed sensorless control of synchronous reluctance motors,” IEEE Transactions on Industry Applications, vol. 35, no. 5, pp. 1050-1057, Sep./Oct. 1999.
[14] P. Guglielmi, M. Pastorelli, and A. Vagati, “Impact of cross- saturation in sensorless control of transverse-laminated synchronous reluctance motors,” IEEE Transactions on Industrial Electronics, vol. 53, no. 2, pp. 429-439, Apr. 2006.
[15] B. J. Chalmers and L. Musaba, “Design and field-weakening performance of a synchronous reluctance motor with axially laminated rotor,” IEEE Transactions on Industry Applications, vol. 34, no. 5, pp. 1035-1041, Sep./Oct. 1998.
[16] A. Vagati, A. Canova, M. Chiampi, M. Pastorelli, and M. Repetto, “Design refinement of synchronous reluctance motors through finite-element analysis,” IEEE Transactions on Industry Applications, vol. 36, no. 4, pp. 1094-1102, July/Aug. 2000.

[17] M. Sanada, K. Hiramoto, S. Morimoto, and Y. Takeda, “Torque ripple improvement for synchronous reluctance motor using an asymmetric flux barrier arrangement,” IEEE Transactions on Industry Applications, vol. 40, no. 4, pp. 1076-1082, July/Aug. 2004.
[18] K. Uezato, T. Senjyu, and Y. Tomori, “Modeling and vector control of synchronous reluctance motors including stator iron loss,” IEEE Transactions on Industrial Electronics, vol. 30, no. 4, pp. 971-976, July/Aug. 1994.
[19] G. Sturtzer, D. Flieller, and J. P. Louis, “Mathematical and experimental method to obtain the inverse modeling of nonsinusoidal and saturated synchronous reluctance motors,” IEEE Transactions on Energy conversion, vol. 18, no. 4, pp. 494-500, Dec. 2003.
[20] G. Stumberger, B. Stumberger, and D. Dolinar, “Identification of linear synchronous reluctance motor parameters,” IEEE Transactions on Industry Applications, vol. 40, no. 5, pp. 1317-1324, Sep./Oct. 2004.
[21] S. Ichikawa, M. Tomita, S. Doki, and S. Okuma, “Sensorless control of synchronous reluctance motors based on extended EMF models considering magnetic saturation with online parameter identification,” IEEE Transactions on Industry Applications, vol. 42, no. 5, pp. 1264-1274, Sep./Oct. 2006.
[22] T. H. Liu and H. H. Hsu, “Adaptive controller design for a synchronous reluctance motor drive system with direct torque control,” IET Electric Power Applications, vol. 1, no. 5, pp. 815-824, Sep. 2007.
[23] C. H. Lin, “Adaptive recurrent fuzzy neural network control for synchronous reluctance motor servo drive,” IEE Proceedings- Electric Power Applications , vol. 151, no. 6, pp. 711-724, Nov. 2004.

[24] H. K. Chiang and C. H. Tseng, “Integral variable structure controller with grey prediction for synchronous reluctance motor drive,” IEE Proceedings-Electric Power Applications, vol. 151, no. 3, pp. 349-358, May 2004.
[25] C. G. Chen, T. H. Liu, M. T. Lin, and C. A. Tai, “Position control of a sensorless synchronous reluctance motor,” IEEE Transactions on Industrial Electronics, vol. 51, no. 1, pp. 15-25, Feb. 2004.
[26] P. Ciufo and D. Platt, “Sensorless rotor position and speed estimation for a synchronous reluctance motor,” IEE Proceedings-Electric Power Applications, vol. 150, no. 2, pp. 158-164,Mar. 2003.
[27] S. J. Kang, J. M. Kim, and S. K. Sul, “Position sensorless control of synchronous reluctance motor using high frequency current injection,” IEEE Transactions on Energy Conversion, vol. 14, no. 4, pp. 1271-1275, Dec. 1999.
[28] T. Senjyu, T. Shingaki, and K. Uezato, “Sensorless vector control of synchronous reluctance motors with disturbance torque observer,” IEEE Transactions on Industrial Electronics, vol. 48, no. 2, pp. 402-407, Apr. 2001.
[29] H. A. Toliyat, L. Xu, and T. A. Lipo, “A five-phase reluctance motor with high specific torque,” IEEE Transactions on Industry Applications, vol. 28, no. 3, pp. 659-667, May/Jun. 1992.
[30] T. H. Liu, M. T. Lin, and Y. C. Yang, “Nonlinear control of a synchronous reluctance drive system with reduced switching frequency,” IEE Proceedings-Electric Power Applications, vol. 153, no. 1, pp. 47-56, Jan. 2006.
[31] ABB Corporation, Power Electronics System Products, http://www.abb.com/.
[32] H. D. Lee, H. J. Kang, and S. K. Sul, “Efficiency-optimized direct torque control of synchronous reluctance motor using feedback linearization,” IEEE Transactions on Industrial Electronics, vol. 46, no. 1, pp. 192-198, Feb. 1999.

[33] M. H. Kim, N. H. Kim, D. H. Kim, S. Okuma, and J. C. Hung, “A position sensorless motion control system of reluctance synchronous motor with direct torque control,” IEEE ISIE-2002, vol. 4 , pp. 1148-1153. July 2002
[34] R. Morales-Caporal and M. Pacas, “A predictive torque control for the synchronous reluctance machine taking into account the magnetic cross saturation,” IEEE Transactions on Industrial Electronics, vol. 54, no. 2, pp. 1161-1167, Apr. 2007.
[35] H. Jun and W. Bin, “New integration algorithms for estimating motor flux over a wide speed range,” IEEE Transactions on Power Electronics, vol. 13, no. 5, pp. 969-977, Sep. 1998.
[36] E. Capecchi, P. Guglielmi, M. Pastorelli, and A. Vagati, “Position-sensorless control of the transverse-laminated synchronous reluctance motor,” IEEE Transactions on Industry Applications, vol. 37, no. 6, pp. 1768-1776, Nov./Dec. 2001.
[37] J. P. Lecointe, R. Romary, J. F. Brudny, and M. McClelland, “Analysis and active reduction of vibration and acoustic noise in the switched reluctance motor,” IEE Proceedings-Electric Power Applications, vol. 151, no. 6, pp. 725-733, Nov. 2004.
[38] T. J. E. Miller, “Switched Reluctance Motors and Their Control,” Magna Physics Publishing, 1993.
[39] Y. Q. Xiang and S. A. Nasar, “Estimation of rotor position and speed of a synchronous reluctance motor for servodrives,” IEE Proceedings -Electric Power Applications, vol. 142, no. 3, pp. 201- 205, May 1995.
[40] D. A. Staton, T. J. E. Miller, and S. E. Wood, “Maximizing the saliency ratio of the synchronous reluctance motor,” IEE Proceedings-Electric Power Applications, vol. 140, no. 4, pp. 249- 259, July 1993.
[41] M. J. Kamper, and A. F. Volsdhenk, “Effect of rotor dimensions and cross magnetisation on Ld and Lq inductances of reluctance synchronous machine with cageless flux barrier rotor,” IEE Proceedings-Electric Power Applications, vol. 141,no. 4, pp. 213- 220, July 1994.
[42] A. Fratta, G. P. Toglia, A. Vagati, and F. Villata, “Torque ripple evaluation of high-performance synchronous reluctance machines,” IEEE Industry Applications Magazine, vol. 1, no.4, pp. 14-22, July/ Aug. 1995.
[43] A. Fratta and A. Vagati, “A reluctance motor drive for high dynamic performance application,” IEEE Transactions on Industry Applications, vol. 28, no. 4, pp. 873-879, July/Aug. 1992.
[44] R. Morales-Caporal and M. Pacas, “Encoderless predictive direct torque control for synchronous reluctance machines at very low and zero speed,” IEEE Transactions on Industrial Electronics , vol. 55, no. 12, pp. 4408-4416, Dec. 2008.
[45] S. E. Lyshevski, A. Nazarov, A. E. Antably, A. S. C. Sinha, M. Rizkalla, and M. E. Sharkawy, “Synchronous reluctance motors: nonlinear analysis and control,” IEEE ACC-2000, pp. 1108-1112, Jun. 2000.

[46] K. Gulez, A. A. Adam, and H. Pastaci, “A novel direct torque control algorithm for IPMSM with minimum harmonics and torque ripples,” IEEE/ASME Transactions on Mechatronics, vol. 12, no. 2, pp. 223- 227, Apr. 2007.
[47] L. Romeral, A. Arias, E. Aldabas, and M. G. Jayne, “Novel direct torque control (DTC) scheme with fuzzy adaptive torque-ripple reduction,” IEEE Transactions on Industrial Electronics, vol. 50, no. 3, pp. 487-492, Jun. 2003.
[48] Y. S. Lai, W. K. Wang, and Y. C. Chen, “Novel switching techniques for reducing the speed ripple of AC drives with direct torque control,” IEEE Transactions on Industrial Electronics, vol. 51, no. 4, pp. 768-775, Aug. 2004.
[49] Y. Xue, X. Xu, T. G. Habetler, and D. M. Divan, “A low cost stator flux oriented voltage source variable speed drive,” IEEE IAS-1990, pp. 410-415 vol. 1, 1990
[50] A. Consoli, C. Cavallaro, G. Scarcella, and A. Testa, “Sensorless torque control of SyncRel motor drives,” IEEE Transactions on Power Electronics, vol. 15, no. 1, pp. 28-35, Jan. 2000.
[51] C. Mademlis, “Compensation of magnetic saturation in maximum torque to current vector controlled synchronous reluctance motor drives,” IEEE Transactions on Energy Conversion, vol. 18, no. 3, pp. 379-385, Sep. 2003.
[52] Y. A. R. I. Mohamed, “Direct instantaneous torque control in direct drive permanent magnet synchronous motors - a new approach,” IEEE Transactions on Energy Conversion, vol. 22, no. 4, pp. 829- 838, Dec. 2007.
[53] T. Lixin, Z. Limin, M. F. Rahman, and H. Yuwen, “A novel direct torque control for interior permanent-magnet synchronous machine drive with low ripple in torque and flux - a speed - sensorless approach,” IEEE Transactions on Industry Applications, vol. 39, no. 6, pp. 1748-1756, Nov./Dec. 2003.
[54] J. Luukko, M. Niemela, and J. P. Nen, “Estimation of rotor and load angle of direct-torque-controlled permanent magnet synchronous machine drive,” IET Electric Power Applications, vol. 1, no. 3, pp. 299-306, May 2007.
[55] 劉昌煥著,交流電機控制-向量控制與直接轉矩控制原理,東華書局,中華民國94年9月
[56] G. S. Buja and M. P. Kazmierkowski, “Direct torque control of PWM inverter-fed AC motors - a survey,” IEEE Transactions on Industrial Electronics, vol. 51, no. 4, pp. 744-757, Aug. 2004.
[57] M. F. Rahman, L. Zhong, M. E. Haque, and M. A. Rahman, “A direct torque controlled interior permanent magnet synchronous motor drive without a speed sensor,” IEEE Transactions on Energy Conversion, vol. 22, no. 1, pp. 57-57, Mar. 2002.
[58] M. H. Shin, D. S. Hyun, S. B. Cho, and S. Y. Choe, “An improved stator flux estimation for speed sensorless stator flux orientation control of induction motors,” IEEE Transactions on Power Electronics, vol. 15, no. 2, pp. 312-318, Mar. 2000.

[59] N. R. N. Idris and A. H. M. Yatim, “An improved stator flux estimation in steady-state operation for direct torque control of induction machines,” IEEE Transactions on Industry Applications, vol. 38, no. 1, pp. 110-116, Jan./Feb. 2002.
[60] P. V. Kokotovic, “The joy of feedback: nonlinear and adaptive,” IEEE Control Systems Magazine, vol. 12, pp. 7-17, Jun. 1992.
[61] M. Krstic, I. Kanellakopoulos, and P. V. Kokotovic, Nonlinear and Adaptive Control Design, John Wiley & Sons, 1995.
[62] I. Kanellakopoulos, P. V. Kokotovic, and A. S. Morse, “Systematic design of adaptive controllers for feedback linearizable systems,” IEEE Transactions on Automatic Control, vol. 36, no. 11, pp. 1241- 1253, Nov. 1991.
[63] Texas Instruments, TMS320X2833X System Control and Interrupts Reference Guide, http://www.focus.ti.com/, 2007.
[64] I. Boldea, N. Muntean, and S. A. Nasar, "Robust low-cost implementation of vector control for reluctance synchronous machines," IEE Proceedings -Electric Power Applications , vol. 141, no. 1, pp. 1-6, Jan. 1994.

無法下載圖示 全文公開日期 2013/07/28 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE