簡易檢索 / 詳目顯示

研究生: 楊仁享
Ren-Xiang Yang
論文名稱: 新穎的八卦五行算法結合渾沌AES應用於彩色圖像加密及其FPGA實現
The Novel Bagua Five-Element Algorithm Combined With Chaos-AES for Color Image Encryption and Its FPGA Implementation
指導教授: 楊振雄
Cheng-Hsiung Yang
口試委員: 吳常熙
Charng-Shi Wu
顏志達
Chih-Ta Yen
徐勝均
Sheng-Dong Xu
學位類別: 碩士
Master
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 96
中文關鍵詞: 新四維渾沌系統影像加密八卦編碼五行相生相剋置換現場可程式化邏輯閘陣列
外文關鍵詞: New four-dimensional chaotic system, Image encryption, Bagua encoding, Five-Element generating and restraining permutation, FPGA
相關次數: 點閱:370下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於渾沌系統的遍歷性、初始值敏感性及不可預測性,使得其非常適合與影像加密做結合,而傳統的加密演算法如DES、TDES已經不適用於現代大量傳輸且透明化的網路世代,為了能達到安全性及加密效率的平衡,本論文設計新四維渾沌系統並使用其生成密鑰,其後將AES結合編碼的設計出高安全性及效率之加密演算法,並透過FPGA的流水線與平行運算對其加密演算法進行優化。
    首先,本論文對新四維渾沌系統進行其性能分析,使用到的分析指標有相位圖、李亞普諾夫指數及NIST SP800-22測試,從分析結果可以發現我們的新四維渾沌系統有著優異的渾沌範圍及隨機性。其次,我們基於AES-128加密演算法結合了八卦編碼之架構,並設計了一個全新的五行相生相剋置換規則,且透過AES-128數輪加密,八卦編碼及五行相生相剋置換可以增加圖像之排列成效,因而增加其安全性,其後我們將演算法實現在基於ARM的FPGA-SoC上,並透過FPGA上的Linux操作HPS與FPGA上的溝通,已便控制FPGA加密演算法的運算與影像輸出輸入。當影像加密完成後便利用VGA端口進行即時顯示。
    接著我們對密文圖像進行數個安全性分析來以此驗證我們加密演算法的安全性,其中包含直方圖分析、相關性分析、差分攻擊分析、夏儂熵分析及速度分析,從分析結果可以表明我們的加密演算法通過了所有具有通過指標的測試並具有相當的安全性。最後,我們對本論文所提出的加密演算法進行總結並提出未來可以改善的部分。


    Due to the ergodicity, sensitivity to initial values, and unpredictability of chaotic systems, they are well-suited for integration with image encryption. Traditional encryption algorithms like DES and TDES are no longer suitable for modern large-scale and transparent network transmissions. To achieve a balance between security and encryption efficiency, this paper designs a new four-dimensional chaotic system for key generation. It then combines AES with encoding to create a highly secure and efficient encryption algorithm. The encryption algorithm is optimized using FPGA's pipelining and parallel computing.
    First, the paper performs a performance analysis of the new four-dimensional chaotic system.The analysis results demonstrate the excellent chaotic range and randomness of our new four-dimensional chaotic system. Next, based on the AES-128 encryption algorithm, we combine it with the Bagua encoding architecture and design a novel Five-Element generating and restraining permutation rule. Through multiple rounds of AES-128 encryption, Bagua encoding, and Five-Element permutation, the permutation effectiveness of the image is increased, enhancing its security. Subsequently, the algorithm is implemented on an ARM-based FPGA-SoC, and communication between the Linux operating system on the HPS and the FPGA enables control of the FPGA encryption algorithm's computation and image input/output. Real-time display is achieved through the VGA port after image encryption.
    Furthermore, several security analyses are conducted on the encrypted images to validate the security of our encryption algorithm. The analysis results demonstrate that our encryption algorithm passes all the tests and exhibits considerable security. Finally, the paper concludes with a summary of the proposed encryption algorithm and suggestion for future improvement.

    致謝 I 摘要 II ABSTRACT III 目錄 IV 圖目錄 VII 表目錄 X 第一章 緒論 1 1.1 研究背景 1 1.2 文獻回顧 1 1.3 研究動機與目的 3 1.4 論文概述 3 第二章 加密演算法設計 5 2.1 新四維渾沌系統 5 2.1.1新四維渾沌方程式 5 2.1.2相位圖(Phase Portraits) 5 2.1.3李亞普諾夫指數(Lyapunov exponent) 7 2.1.4 NIST SP800-22測試 10 2.2 密鑰產生器 15 2.3 AES基本原理 16 2.4 八卦編碼 18 2.5 五行相生相剋置換 19 2.6 加密演算法 21 2.6.1 AddRoundKey 22 2.6.2 編解碼及置換 25 2.6.3 MixColumns 26 2.7 解密演算法 27 第三章 FPGA實現 29 3.1 開發環境 29 3.1.1 FPGA 29 3.1.2 Cyclone V DE10-Standard 29 3.1.3 Intel Quartus Prime 31 3.2 FPGA實現離散化渾沌系統 32 3.2.1 IEEE 754標準之單精度浮點數 32 3.2.2 離散化渾沌系統 33 3.2.3 渾沌序列產生器實現 33 3.2.4 渾沌序列產生器驗證 36 3.3 FPGA實現八卦編解碼及五行相生相剋置換 38 3.4 HPS溝通 41 3.5 硬體實現加密演算法 44 3.5.1 SDRAM控制 45 3.5.2 加密系統 46 3.6 結果演示 47 第四章 安全性分析 51 4.1 直方圖分析(Histogram Analysis) 51 4.2 相關性分析(Correlation Analysis) 56 4.3 夏儂熵分析(Shannon Entropy Analysis) 71 4.4 差分攻擊分析(Differential Attack Analysis) 74 4.5 速度分析(Speed Analysis) 76 第五章 結論與未來展望 77 5.1 結論 77 5.2 未來展望 78 參考文獻 79

    [1] Shannon, Claude E. "Communication Theory of Secrecy Systems." The Bell system technical journal 28, no. 4 (1949): 656-715.
    [2] Wightman, AS. "New Results in Qualitative Dynamics: Problèmes Ergodiques De La Mécanique Classique. Vi Arnold and A. Avez. Gauthier-Villars, Paris, 1967. Iv+ 243 Pp., Illus. Paper, 48 F. Monographies Internationales De Mathématiques Modernes." Science 159, no. 3821 (1968): 1344-1344.
    [3] Matthews, Robert. "On the Derivation of a “Chaotic” Encryption Algorithm." Cryptologia 13, no. 1 (1989): 29-42.
    [4] Scharinger, J. "Fast Encryption of Image Data Using Chaotic Kolmogorov Flows." Article. Journal of Electronic Imaging 7, no. 2 (Apr 1998): 318-325.
    [5] Fridrich, J. "Symmetric Ciphers Based on Two-Dimensional Chaotic Maps." Article. International Journal of Bifurcation and Chaos 8, no. 6 (Jun 1998): 1259-1284.
    [6] Kotulski, Z., J. Szczepanski, K. Gorski, A. Paszkiewicz, and A. Zugaj. "Application of Discrete Chaotic Dynamical Systems in Cryptography - Dcc Method." Article. International Journal of Bifurcation and Chaos 9, no. 6 (Jun 1999): 1121-1135.
    [7] Yen, J. C., and J. I. Guo. "Efficient Hierarchical Chaotic Image Encryption Algorithm and Its Vlsi Realisation." Article. Iee Proceedings-Vision Image and Signal Processing 147, no. 2 (Apr 2000): 17-175.
    [8] Zhang, L. H., X. F. Liao, and X. B. Wang. "An Image Encryption Approach Based on Chaotic Maps." Article. Chaos Solitons & Fractals 24, no. 3 (May 2005): 759-765.
    [9] Gao, H. J., Y. S. Zhang, S. Y. Liang, and D. Q. Li. "A New Chaotic Algorithm for Image Encryption." Article. Chaos Solitons & Fractals 29, no. 2 (Jul 2006): 393-399.
    [10] Rhouma, R., and S. Belghith. "Cryptanalysis of a New Image Encryption Algorithm Based on Hyper-Chaos." Article. Physics Letters A 372, no. 38 (Sep 2008): 5973-78.
    [11] Zhang, Ying-Qian, and Xing-Yuan Wang. "A Symmetric Image Encryption Algorithm Based on Mixed Linear–Nonlinear Coupled Map Lattice." Information Sciences 273 (2014): 329-351.
    [12] Pak, Chanil, and Lilian Huang. "A New Color Image Encryption Using Combination of the 1d Chaotic Map." Signal Processing 138 (2017): 129-137.
    [13] Hua, Zhongyun, Fan Jin, Binxuan Xu, and Hejiao Huang. "2d Logistic-Sine-Coupling Map for Image Encryption." Signal Processing 149 (2018): 148-161.
    [14] Djimasra, F., J. D. Nkapkop, N. Tsafack, J. Kengne, J. Y. Effa, A. Boukabou, and L. Bitjoka. "Robust Cryptosystem Using a New Hyperchaotic Oscillator with Stricking Dynamic Properties." Article. Multimedia Tools and Applications 80, no. 16 (Jul 2021): 25121-25137.
    [15] Muhaya, Fahad T. Bin. "Chaotic and Aes Cryptosystem for Satellite Imagery." Telecommunication Systems (2011).
    [16] Wadi, S. M., and N. Zainal. "High Definition Image Encryption Algorithm Based on Aes Modification." Article. Wireless Personal Communications 79, no. 2 (Nov 2014): 811-829.
    [17] Yap, W. S., R. C. W. Phan, and B. M. Goi. "Cryptanalysis of a High-Definition Image Encryption Based on Aes Modification." Article. Wireless Personal Communications 88, no. 3 (Jun 2016): 685-699.
    [18] Barik, R. C., and S. Changder. "A Novel and Efficient Amino Acid Codon Based Medical Image Encryption Scheme Colligating Multiple Chaotic Maps." Article. Multimedia Tools and Applications 80, no. 7 (Mar 2021): 10723-10760.
    [19] Kaur, Harpreet, and Neelofar Sohi. "A Study for Applications of Histogram in Image Enhancement." Int. J. Eng. Sci 6, no. 6 (2017): 59-63.
    [20] Asuero, Agustin Garcia, Ana Sayago, and AG González. "The Correlation Coefficient: An Overview." Critical reviews in analytical chemistry 36, no. 1 (2006): 41-59.
    [21] Chen, Guanrong, Yaobin Mao, and Charles K Chui. "A Symmetric Image Encryption Scheme Based on 3d Chaotic Cat Maps." Chaos, Solitons & Fractals 21, no. 3 (2004): 749-761.
    [22] Wu, Yue, Yicong Zhou, George Saveriades, Sos Agaian, Joseph P Noonan, and Premkumar Natarajan. "Local Shannon Entropy Measure with Statistical Tests for Image Randomness." Information Sciences 222 (2013): 323-42.
    [23] Jasra, Bhat, and Ayaz Hassan Moon. "Color Image Encryption and Authentication Using Dynamic DNA Encoding and Hyper Chaotic System." Expert Systems with Applications 206 (2022).
    [24] Yang, Sen, Xiaojun Tong, Zhu Wang, and Miao Zhang. "Efficient Color Image Encryption Algorithm Based on 2d Coupled Chaos and Multi-Objective Optimized S-Box." Physica Scripta 97, no. 4 (2022).
    [25] Yang, Cheng-Hsiung, and Sih-Jie Huang. "Secure Color Image Encryption Algorithm Based on Chaotic Signals and Its Fpga Realization." International Journal of Circuit Theory and Applications 46, no. 12 (2018): 2444-2461.
    [26] Gan, Zhi-hua, Xiu-li Chai, Dao-jun Han, and Yi-ran Chen. "A Chaotic Image Encryption Algorithm Based on 3-D Bit-Plane Permutation." Neural Computing and Applications 31, no. 11 (2018): 7111-7130.
    [27] Yang, Cheng-Hsiung, Hou-Cheng Wu, and Shun-Feng Su. "Implementation of Encryption Algorithm and Wireless Image Transmission System on Fpga." IEEE Access 7 (2019): 50513-50523.
    [28] Mandal, M. K., M. Kar, S. K. Singh, and V. K. Barnwal. "Symmetric Key Image Encryption Using Chaotic Rossler System." Article. Security and Communication Networks 7, no. 11 (Nov 2014): 2145-2152.
    [29] Sun, K. "Chaotic Secure Communication: Principles and Technologies. Tsinghua University Press and Walter De Gruyter Gmbh." (2016).
    [30] Bassham III, Lawrence E, Andrew L Rukhin, Juan Soto, James R Nechvatal, Miles E Smid, Elaine B Barker, Stefan D Leigh, et al. Sp 800-22 Rev. 1a. A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications. National Institute of Standards & Technology, 2010.
    [31] Alvarez, Gonzalo, and Shujun Li. "Some Basic Cryptographic Requirements for Chaos-Based Cryptosystems." International journal of bifurcation and chaos 16, no. 08 (2006): 2129-2151.
    [32] Rijmen, V, and J Daemen. "Proceedings of Federal Information Processing Standards Publications 197." National Institute of Standards and Technology Springfield, 2001.
    [33] Copyright © Terasic Inc. (2017) DE10-Standard_User_manual. Retrieved from https://www.intel.com/content/dam/altera-www/global/en_US/portal/dsn/42/doc-us-dsnbk-42-5505271707235-de10-standard-user-manual-sm.pdf
    [34] Fu, Chong, Jun-jie Chen, Hao Zou, Wei-hong Meng, Yong-feng Zhan, and Ya-wen Yu. "A Chaos-Based Digital Image Encryption Scheme with an Improved Diffusion Strategy." Optics express 20, no. 3 (2012): 2363-2378.
    [35] Wu, Yue, Joseph P Noonan, and Sos Agaian. "Npcr and Uaci Randomness Tests for Image Encryption." Cyber journals: multidisciplinary journals in science and technology, Journal of Selected Areas in Telecommunications (JSAT) 1, no. 2 (2011): 31-38.
    [36] Abdelfatah, R.I., “Secure Image Transmission Using Chaotic-Enhanced Elliptic Curve Cryptography,” IEEE Access, vol. 8, pp. 3875–3890, Jul. 2020.
    [37] Chen, T. H., and C. H. Yang. "Region of Interest Encryption Based on Novel 2d Hyperchaotic Signal and Bagua Coding Algorithm."Article. Ieee Access 10 (2022): 82751-82765.

    QR CODE