簡易檢索 / 詳目顯示

研究生: 吳中睿
Jhong-Ruei Wu
論文名稱: 利用大氣電漿製備含醯胺基或羧基之共聚高分子並應用於生醫材料
Preparation of Amide-containing or Carboxylic-containing Copolymer via Atmospheric Pressure Plasma for Biomaterial Applications
指導教授: 王孟菊
Meng-Jiy Wang
口試委員: 王孟菊
Meng-Jiy Wang
陳克紹
Ko-Shao Chen
何郡軒
Jinn-Hsuan Ho
林文賓
Wen-Pin Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 109
語文別: 中文
論文頁數: 110
中文關鍵詞: 大氣電漿共聚物兩性離子抗沾黏蛋白質貼附
外文關鍵詞: Atmospheric pressure plasma, Copolymer, Zwitterion, Anti-fouling, Protein adsorption
相關次數: 點閱:424下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用常壓電漿製備兩性共聚物,並將製備之共聚物修飾於材料表面,目標為降低生物分子在材料上的沾粘。共聚物合成所使用之單體為丙烯醯胺 (acrylic amide, AAm)、丙烯酸 (acrylic acid, AAc) 以及硫代甜菜鹼 (sulfobetaine methacrylate, SBMA),利用常壓電漿分別製備含醯胺基之 p(S-co-AAm) 及含羧基之 p(S-co-AAc) 兩種共聚物,探討電漿參數與製備方法對共聚高分子物化性質的影響。首先以 ATR-FTIR、1H-NMR、GPC等儀器分析共聚物之結構,接著分析經共聚物修飾樣本之表面親疏水性、表面界達電位、表面元素組成、抗蛋白質沾黏效果及生物相容性。
    本研究第一部分,利用常壓電漿 (atmospheric pressure plasma jet, APPJ) 產生之自由基作為起始劑,於單體溶液內進行共聚反應。由 ATR-FTIR 分析樣本之化學官能基,並比較APPJ 聚合與傳統熱聚合所製備之共聚高分子顯示,APPJ聚合保有與熱聚合相同之化學官能基,故以APPJ製備之共聚物不會因電漿掃描而造成化學官能基的變異。以 GPC 進行分子量分析,由APPJ操作功率70 W,掃描次數10、15與20次製備p(S-co-AAm),獲得共聚物分子量為 140 kDa、147 kDa 與 153 kDa,分散性指數為3.11、2.55 與 2.04。另一方面,當固定APPJ操作功率為 70 W,掃描次數10次,單體直接混合並以 APPJ 輔助聚合,共聚物分子量為 120 kDa,分散性指數為 4.52。若使單體經 APPJ 預聚後混合,再以APPJ掃描進行共聚,共聚物分子量為 150 kDa,分散性指數為 2.53,顯示當預聚物混合再以APPJ掃描,能有效增加小分子產物再聚合的可能。
    本研究第二部分,利用共聚高分子修飾於材料表面,目標為減少材料之沾黏現象。以 APPJ 製備之 p(S-co-AAm) 修飾於基材表面顯示,TCPS表面水接觸角由 88˚ 減少至低於 10˚ 之超親水性。由蛋白質貼附結果顯示,與未經修飾之基材相比,於溶菌酶以及牛血清蛋白之貼附量分別減少 51 % ~ 60 % 以及52 % ~ 62 %。由L929細胞進行LDH assay測試結果顯示,經表面修飾後樣本仍具生物相容性。另一方面,以APPJ製備之 p(S-co-AAc) 修飾於基材,玻璃表面水接觸角由 33˚ 減少至 4˚ ~ 16˚,並由蛋白質貼附實驗顯示,溶菌酶與牛血清蛋白貼附量與空白基材相比減少了 52 % ~ 66 % 及 40 % ~ 56 %。綜合上述結果,利用 APPJ 可成功製備兩性共聚高分子,並透過 APPJ 參數的調整可進行分子量大小的調控。在材料表面應用上,能有效增加基材之表面親水性與非特異性抗沾黏的效果,故 APPJ-p(S-co-AAm) 及 APPJ-p(S-co-AAc) 於生醫材料之應用有其發展潛力。


    The goal of this research is to synthesize zwitterionic copolymers by atmospheric pressure plasma. The copolymers of acrylic amide (AAm), acrylic acid (AAc) with sulfobetaine methacrylate (SBMA) to prepare amide-containing p(S-co-AAm) and carbonyl-containing p(S-co-AAc), two types of the zwitterionic copolymers. The synthesized copolymers were applied to modify the surface of the different substrates such that the surface wettability, zeta potential, biocompatibility , and anti-fouling properties were evaluated.
    In the first part of this research, free radicals generated by atmospheric pressure plasma jet (APPJ) were used to replace the initiators used in thermal polymerization reactions. FTIR results revealed that the copolymers prepared by APPJ and thermal polymerization possess similar chemical structure. GPC results showed that the molecular weight of the copolymers increased with the number of APPJ scans whereas lower dispersibility was obtained. APPJ scanning can effectively increase the possibility of re-polymerization of the prepolymers with small molecular weight.
    In the second part of this research, in order to improve the adhesion problem of the materials, the prepared copolymers were modified on the surface of substrates. To reveal the hydrophilicity properties of p(S-co-AAm), both of APPJ-assisted polymerized and thermal polymerized p(S-co-AAm) were deposited on TCPS substrate. The water contact angles of the surface modified TCPS were reduced from 88˚ to less than 10˚ which showed the superhydrophilic properties of p(S-co-AAm) copolymers. In the results of protein adsorption test, as compared to the unmodified TCPS substrate, the amounts of lysozyme adsorption son surface modified TCPS reduced by 51 % ~ 60 %. On the other hand, the amount of BSA adsorption reduced by 52 % ~ 62 %. In addition, the results of LDH assay showed the p(S-co-AAm) deposited surface still maintain it biocompatibility. For the hydrophilicity confirmation of p(S-co-AAc), glass was used as a substrate for surface modification test. The results of surface modification on glass showed thatthe water contact of p(S-co-AAc) deposited glass reduced from 33˚ to 4˚ ~ 16˚. To verify the relationship between hydrophilicity increasing and antifouling properties improvement, the p(S-co-AAc) deposited glasses were doing the protein adsorption test of lysozyme and BSA. From the results of protein adsorption test, p(S-co-AAc) deposited glass showed the 52% ~ 66% reduction of lysozyme adsorption, and 40% ~ 56% reduction of BSA adsorption as compared to the pristine glass. From those results, the copolymers prepared via APPJ could retain the same chemical functional groups as the copolymers prepared via traditional polymerization method. In addition, the molecular weight of the copolymers could control by APPJ scanning parameters and preparation methods. Furthermore, on the application of the surface modification of the materials, it can effectively increase the anti-fouling properties of the substrates. Therefore, the uses of APPJ to prepare p(S-co-AAm) and p(S-co-AAc) have potentials for future development and application of medical materials.

    摘要 I Abstract III 致謝 V 目錄 VI 圖目錄 VIII 表目錄 XIII 縮寫表 XIV 第一章 研究背景 1 1-1電漿介紹 1 1-1-1電漿定義 1 1-1-2電漿應用 2 1-1-3常壓電漿及其應用 3 1-2 抗沾黏之相關應用 7 1-2-1 民生工業 7 1-2-2 環境工程 8 1-2-3 生醫工程 9 1-3 兩性離子 10 1-3-1 抗沾黏原理 13 1-3-2 兩性共聚物之應用 13 第二章 實驗方法與儀器原理 34 2-1 實驗藥品 34 2-1-1 共聚物合成所需藥品 34 2-1-2 基材表面修飾所需藥品 35 2-1-3 光固化3D列印材料所需藥品 35 2-1-4 蛋白質貼附所需藥品 36 2-1-5 細胞培養所需藥品 36 2-2 實驗方法 38 2-2-1 常壓電漿系統 38 2-2-2 利用大氣電漿製備共聚高分子 38 2-2-3 射頻電漿系統 40 2-2-4 利用 p(S-co-AAm) 沉積修飾於基材表面 41 2-2-5 利用 p(S-co-AAc) 沉積修飾於基材表面 43 2-2-6 蛋白質貼附測試 43 2-2-7 細胞貼附測試 45 3-2-8 光固化3D列印基材製備 46 2-3 儀器原理及方法 47 2-3-1 水接觸角量測儀 (Water contact angle measurement device) 47 2-3-2 全反射式傅立葉紅外線光譜儀 (ATR-FTIR) 47 2-3-3 界達電位量測儀 (Zeta potential analyzer) 48 2-3-4 凝膠滲透層析儀 (Gel Permeation Chromatography, GPC) 48 2-3-5 化學分析電子能譜儀 (ESCA) 49 2-3-6 統計學分析 (Statistical analysis) 50 第三章 結果與討論 54 3-1 利用 APPJ 輔助聚合法製備 p(S-co-AAm) 共聚物 54 3-1-1 利用傅立葉紅外光譜儀分析 p(S-co-AAm) 之化學官能基 54 3-1-2 利用 GPC 分析 p(S-co-AAm) 之分子量與分子量分佈 55 3-1-3利用核磁共振儀分析 p(S-co-AAm) 之化學結構 59 3-2 利用APPJ輔助聚合法製備 p(S-co-AAc) 共聚物 61 3-2-1 利用傅立葉紅外光譜儀分析 p(S-co-AAc) 之化學官能基 61 3-2-2 利用 GPC 分析 p(S-co-AAc) 之分子量與分子量分佈 62 3-2-3 利用核磁共振儀分析 p(S-co-AAc) 之化學結構 64 3-3 利用浸泡沉積法將 p(S-co-AAm) 修飾於不同基材 65 3-3-1 探討經 p(S-co-AAm) 修飾後樣本之親疏水性影響 65 3-3-2 探討蛋白質於 p(S-co-AAm) 修飾後樣本之貼附影響 66 3-4 利用浸泡沉積法將 p(S-co-AAc) 修飾於不同基材 69 3-4-1 探討經 p(S-co-AAc) 修飾後樣本之親疏水性影響 69 3-4-2 探討蛋白質於 p(S-co-AAc) 修飾後樣本之貼附影響 69 3-5 探討經共聚物修飾後基材於表面界達電位之影響 71 3-6 探討經 p(S-co-AAm) 沉積修飾樣本於表面元素組成之影響 71 3-7 探討經 p(S-co-AAm) 沉積修飾後樣本之生物相容性 72 第四章 結論 96 4-1 大氣電漿聚合共聚高分子 96 4-2 利用共聚高分子對基材進行表面修飾 97 第五章 未來展望 99 第六章 參考文獻 100 附錄: 口試委員 Q&A 107

    [1] J. A. Bittencourt, Fundamentals of plasma physics: Springer Science & Business Media, 2013.
    [2] D. A. Gurnett, and A. Bhattacharjee, Introduction to plasma physics: with space and laboratory applications: Cambridge university press, 2005.
    [3] R. d'Agostino, P. Favia, C. Oehr, and M. R. Wertheimer, “Low‐temperature plasma processing of materials: Past, present, and future,” Plasma Processes Polymers, vol. 2, no. 1, pp. 7-15, 2005.
    [4] P. K. Chu, J. Chen, L. Wang, and N. Huang, “Plasma-surface modification of biomaterials,” Materials Science Engineering: R: Reports, vol. 36, no. 5-6, pp. 143-206, 2002.
    [5] R. Fitzpatrick, “Introduction to plasma physics,” The University of Texas at Austin: sn, pp. 242, 2008.
    [6] W. Wang, M. Rong, J. D. Yan, and Y. Wu, “The reactive thermal conductivity of thermal equilibrium and nonequilibrium plasmas: application to nitrogen,” IEEE Transactions on Plasma Science, vol. 40, no. 4, pp. 980-989, 2012.
    [7] M. E. Vlachopoulou, G. Kokkoris, C. Cardinaud, E. Gogolides, and A. Tserepi, “Plasma etching of poly (dimethylsiloxane): Roughness formation, mechanism, control, and application in the fabrication of microfluidic structures,” Plasma Processes Polymers, vol. 10, no. 1, pp. 29-40, 2013.
    [8] T. S. Williams, H. Yu, and R. F. Hicks, “Atmospheric pressure plasma activation as a surface pre-treatment for the adhesive bonding of aluminum 2024,” Journal of Adhesion Science Technology, vol. 28, no. 7, pp. 653-674, 2014.
    [9] S. K. Pankaj, C. Bueno-Ferrer, N. Misra, V. Milosavljević, C. O'donnell, P. Bourke, K. Keener, and P. Cullen, “Applications of cold plasma technology in food packaging,” Trends in Food Science Technology, vol. 35, no. 1, pp. 5-17, 2014.
    [10] K. J. Kanarik, T. Lill, E. A. Hudson, S. Sriraman, S. Tan, J. Marks, V. Vahedi, and R. A. Gottscho, “Overview of atomic layer etching in the semiconductor industry,” Journal of Vacuum Science echnology A: Vacuum, Surfaces, Films, vol. 33, no. 2, pp. 020802, 2015.
    [11] A. Zille, M. M. Fernandes, A. Francesko, T. Tzanov, M. Fernandes, F. R. Oliveira, L. Almeida, T. Amorim, N. Carneiro, and M. F. Esteves, “Size and aging effects on antimicrobial efficiency of silver nanoparticles coated on polyamide fabrics activated by atmospheric DBD plasma,” ACS applied materials & interfaces, vol. 7, no. 25, pp. 13731-13744, 2015.
    [12] A. Ohl, W. Schleinitz, A. Meyer-Sievers, A. Becker, D. Keller, K. Schröder, and J. Conrads, “Design of an UHV reactor system for plasma surface treatment of polymer materials,” Surface Coatings Technology, vol. 116, pp. 1006-1010, 1999.
    [13] A. Schutze, J. Y. Jeong, S. E. Babayan, J. Park, G. S. Selwyn, and R. F. Hicks, “The atmospheric-pressure plasma jet: a review and comparison to other plasma sources,” IEEE transactions on plasma science, vol. 26, no. 6, pp. 1685-1694, 1998.
    [14] C. Tendero, C. Tixier, P. Tristant, J. Desmaison, and P. Leprince, “Atmospheric pressure plasmas: A review,” Spectrochimica Acta Part B: Atomic Spectroscopy, vol. 61, no. 1, pp. 2-30, 2006.
    [15] J. Laimer, and H. Störi, “Recent Advances in the Research on Non-Equilibrium Atmospheric Pressure Plasma Jets,” Plasma Processes and Polymers, vol. 4, no. 3, pp. 266-274, 2007.
    [16] G. Daeschlein, T. von Woedtke, E. Kindel, R. Brandenburg, K.-D. Weltmann, and M. Jünger, “Antibacterial Activity of an Atmospheric Pressure Plasma Jet Against Relevant Wound Pathogens in vitro on a Simulated Wound Environment,” Plasma Processes and Polymers, vol. 7, no. 3-4, pp. 224-230, 2010.
    [17] T. Kawase, T. Tanaka, H. Minbu, M. Kamiya, M. Oda, and T. Hara, “An atmospheric-pressure plasma-treated titanium surface potentially supports initial cell adhesion, growth, and differentiation of cultured human prenatal-derived osteoblastic cells,” J Biomed Mater Res B Appl Biomater, vol. 102, no. 6, pp. 1289-96, Aug, 2014.
    [18] O. Beier, A. Pfuch, K. Horn, J. Weisser, M. Schnabelrauch, and A. Schimanski, “Low Temperature Deposition of Antibacterially Active Silicon Oxide Layers Containing Silver Nanoparticles, Prepared by Atmospheric Pressure Plasma Chemical Vapor Deposition,” Plasma Processes and Polymers, vol. 10, no. 1, pp. 77-87, 2013.
    [19] H. W. Liu, S. P. Liang, T. J. Wu, H. Chang, P. K. Kao, C. C. Hsu, J. Z. Chen, P. T. Chou, and I. C. Cheng, “Rapid atmospheric pressure plasma jet processed reduced graphene oxide counter electrodes for dye-sensitized solar cells,” ACS Appl Mater Interfaces, vol. 6, no. 17, pp. 15105-12, Sep 10, 2014.
    [20] S. Zouaghi, T. Six, S. Bellayer, S. Moradi, S. G. Hatzikiriakos, T. Dargent, V. Thomy, Y. Coffinier, C. André, and G. Delaplace, “Antifouling biomimetic liquid-infused stainless steel: application to dairy industrial processing,” ACS Applied Materials Interfaces, vol. 9, no. 31, pp. 26565-26573, 2017.
    [21] H. Z. Shafi, Z. Khan, R. Yang, and K. K. Gleason, “Surface modification of reverse osmosis membranes with zwitterionic coating for improved resistance to fouling,” Desalination, vol. 362, pp. 93-103, 2015.
    [22] B. Nisol, G. Oldenhove, N. Preyat, D. Monteyne, M. Moser, D. Perez-Morga, and F. Reniers, “Atmospheric plasma synthesized PEG coatings: non-fouling biomaterials showing protein and cell repulsion,” Surface Coatings Technology, vol. 252, pp. 126-133, 2014.
    [23] A. Laschewsky, and A. Rosenhahn, “Molecular design of zwitterionic polymer interfaces: searching for the difference,” Langmuir, vol. 35, no. 5, pp. 1056-1071, 2018.
    [24] L. D. Blackman, P. A. Gunatillake, P. Cass, and K. E. Locock, “An introduction to zwitterionic polymer behavior and applications in solution and at surfaces,” Chemical Society Reviews, vol. 48, no. 3, pp. 757-770, 2019.
    [25] L. Zheng, H. S. Sundaram, Z. Wei, C. Li, and Z. Yuan, “Applications of zwitterionic polymers,” Reactive Functional Polymers, vol. 118, pp. 51-61, 2017.
    [26] S. Guo, D. Janczewski, X. Zhu, R. Quintana, T. He, and K. G. Neoh, “Surface charge control for zwitterionic polymer brushes: Tailoring surface properties to antifouling applications,” J Colloid Interface Sci, vol. 452, pp. 43-53, Aug 15, 2015.
    [27] H. Jiang, X. B. Wang, C. Y. Li, J. S. Li, F. J. Xu, C. Mao, W. T. Yang, and J. Shen, “Improvement of hemocompatibility of polycaprolactone film surfaces with zwitterionic polymer brushes,” Langmuir, vol. 27, no. 18, pp. 11575-81, Sep 20, 2011.
    [28] Y. N. Chou, F. Sun, H. C. Hung, P. Jain, A. Sinclair, P. Zhang, T. Bai, Y. Chang, T. C. Wen, Q. Yu, and S. Jiang, “Ultra-low fouling and high antibody loading zwitterionic hydrogel coatings for sensing and detection in complex media,” Acta Biomater, vol. 40, pp. 31-37, Aug, 2016.
    [29] S. Chen, J. Zheng, L. Li, and S. Jiang, “Strong resistance of phosphorylcholine self-assembled monolayers to protein adsorption: insights into nonfouling properties of zwitterionic materials,” Journal of the American Chemical Society, vol. 127, no. 41, pp. 14473-14478, 2005.
    [30] S. Jeon, J. Lee, J. Andrade, and P. De Gennes, “Protein—surface interactions in the presence of polyethylene oxide: I. Simplified theory,” Journal of colloid interface science, vol. 142, no. 1, pp. 149-158, 1991.
    [31] D. Zhang, B. Ren, Y. Zhang, Y. Liu, H. Chen, S. Xiao, Y. Chang, J. Yang, and J. Zheng, “Micro-and Macroscopically Structured Zwitterionic Polymers with Ultralow Fouling Property,” Journal of Colloid Interface Science, 2020.
    [32] H. He, Z. Xiao, Y. Zhou, A. Chen, X. Xuan, Y. Li, X. Guo, J. Zheng, J. Xiao, and J. Wu, “Zwitterionic poly (sulfobetaine methacrylate) hydrogels with optimal mechanical properties for improving wound healing in vivo,” Journal of Materials Chemistry B, vol. 7, no. 10, pp. 1697-1707, 2019.
    [33] R. Wang, K. G. Neoh, E. T. Kang, P. A. Tambyah, and E. Chiong, “Antifouling coating with controllable and sustained silver release for long‐term inhibition of infection and encrustation in urinary catheters,” Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol. 103, no. 3, pp. 519-528, 2015.
    [34] X. Jin, H. Jiang, F. Qiao, W. Huang, X. Bao, Z. Wang, and Q. Hu, “Fabrication of alginate‐P (SBMA‐co‐AAm) hydrogels with ultrastretchability, strain sensitivity, self‐adhesiveness, biocompatibility, and self‐cleaning function for strain sensors,” Journal of Applied Polymer Science, pp. 49697, 2020.
    [35] Y. Chang, W.-Y. Chen, W. Yandi, Y.-J. Shih, W.-L. Chu, Y.-L. Liu, C.-W. Chu, R.-C. Ruaan, and A. Higuchi, “Dual-thermoresponsive phase behavior of blood compatible zwitterionic copolymers containing nonionic poly (N-isopropyl acrylamide),” Biomacromolecules, vol. 10, no. 8, pp. 2092-2100, 2009.
    [36] H. Lee, S. M. Dellatore, W. M. Miller, and P. B. Messersmith, “Mussel-inspired surface chemistry for multifunctional coatings,” science, vol. 318, no. 5849, pp. 426-430, 2007.
    [37] M. Hecker, M. Ting, and J. Malmström, “Simple Coatings to Render Polystyrene Protein Resistant,” Coatings, vol. 8, no. 2, 2018.
    [38] D. Mangindaan, I. Yared, H. Kurniawan, J. R. Sheu, and M. J. Wang, “Modulation of biocompatibility on poly(vinylidene fluoride) and polysulfone by oxygen plasma treatment and dopamine coating,” J Biomed Mater Res A, vol. 100, no. 11, pp. 3177-88, Nov, 2012.
    [39] H.-C. Yang, R. Z. Waldman, M.-B. Wu, J. Hou, L. Chen, S. B. Darling, and Z.-K. Xu, “Dopamine: Just the Right Medicine for Membranes,” Advanced Functional Materials, vol. 28, no. 8, 2018.
    [40] L. Xie, L. Gong, J. Zhang, L. Han, L. Xiang, J. Chen, J. Liu, B. Yan, and H. Zeng, “A wet adhesion strategy via synergistic cation–π and hydrogen bonding interactions of antifouling zwitterions and mussel-inspired binding moieties,” Journal of Materials Chemistry A, vol. 7, no. 38, pp. 21944-21952, 2019.
    [41] S. K. Vashist, E. Lam, S. Hrapovic, K. B. Male, and J. H. Luong, “Immobilization of antibodies and enzymes on 3-aminopropyltriethoxysilane-functionalized bioanalytical platforms for biosensors and diagnostics,” Chem Rev, vol. 114, no. 21, pp. 11083-130, Nov 12, 2014.
    [42] S. H. North, E. H. Lock, C. J. Cooper, J. B. Franek, C. R. Taitt, and S. G. Walton, “Plasma-based surface modification of polystyrene microtiter plates for covalent immobilization of biomolecules,” ACS Appl Mater Interfaces, vol. 2, no. 10, pp. 2884-91, Oct, 2010.
    [43] S. Jayalath, S. C. Larsen, and V. H. Grassian, “Surface adsorption of Nordic aquatic fulvic acid on amine-functionalized and non-functionalized mesoporous silica nanoparticles,” Environmental Science: Nano, vol. 5, no. 9, pp. 2162-2171, 2018.
    [44] M. Guvendiren, J. Molde, R. M. Soares, and J. Kohn, “Designing Biomaterials for 3D Printing,” ACS Biomater Sci Eng, vol. 2, no. 10, pp. 1679-1693, Oct 10, 2016.
    [45] H. N. Chia, and B. M. Wu, “Recent advances in 3D printing of biomaterials,” J Biol Eng, vol. 9, pp. 4, 2015.
    [46] U. Jammalamadaka, and K. Tappa, “Recent Advances in Biomaterials for 3D Printing and Tissue Engineering,” J Funct Biomater, vol. 9, no. 1, Mar 1, 2018.
    [47] G. Dutra, J. Canning, W. Padden, C. Martelli, and S. Dligatch, “Large area optical mapping of surface contact angle,” Opt Express, vol. 25, no. 18, pp. 21127-21144, Sep 4, 2017.
    [48] T. Huhtamaki, X. Tian, J. T. Korhonen, and R. H. A. Ras, “Surface-wetting characterization using contact-angle measurements,” Nat Protoc, vol. 13, no. 7, pp. 1521-1538, Jul, 2018.
    [49] M. A. Mohamed, J. Jaafar, A. Ismail, M. Othman, and M. Rahman, "Fourier transform infrared (FTIR) spectroscopy," Membrane Characterization, pp. 3-29: Elsevier, 2017.
    [50] M. Kaszuba, J. Corbett, F. M. Watson, and A. Jones, “High-concentration zeta potential measurements using light-scattering techniques,” Philosophical Transactions of the Royal Society A: Mathematical, Physical Engineering Sciences, vol. 368, no. 1927, pp. 4439-4451, 2010.
    [51] B. Mulloy, C. Gee, S. Wheeler, R. Wait, E. Gray, and T. Barrowcliffe, “Molecular weight measurements of low molecular weight heparins by gel permeation chromatography,” Thrombosis haemostasis, vol. 77, no. 04, pp. 668-674, 1997.
    [52] W. Yau, C. Malone, and H. Suchan, “Separation mechanisms in gel permeation chromatography,” Separation Science, vol. 5, no. 3, pp. 259-271, 1970.
    [53] H.-L. Lee, and N. T. Flynn, "X-ray photoelectron spectroscopy," Handbook of Applied Solid State Spectroscopy, pp. 485-507: Springer, 2006.
    [54] B. Yang, C. Wang, Y. Zhang, L. Ye, Y. Qian, Y. Shu, J. Wang, J. Li, and F. Yao, “A thermoresponsive poly(N-vinylcaprolactam-co-sulfobetaine methacrylate) zwitterionic hydrogel exhibiting switchable anti-biofouling and cytocompatibility,” Polymer Chemistry, vol. 6, no. 18, pp. 3431-3442, 2015.
    [55] R. Murugan, S. Mohan, and A. Bigotto, “FTIR and polarised Raman spectra of acrylamide and polyacrylamide,” J. Korean Phys. Soc, vol. 32, no. 4, pp. 505-512, 1998.
    [56] Y. H. Huang, and M. J. Wang, “Atmospheric pressure plasma jet‐assisted copolymerization of sulfobetaine methacrylate and acrylic acid,” Plasma Processes and Polymers, vol. 17, no. 4, 2020.
    [57] Z. Abdollahi, and V. G. Gomes, “Synthesis and characterization of polyacrylamide with controlled molar weight,” Chemeca : Engineering a Better World: Sydney Hilton Hotel, NSW, Australia, 18-21 September, pp. 2291, 2011.
    [58] F. ZIAEI, H. Bouhendi, and F. ZIAEI, “NMR study of polyacrylamide tacticity synthesized by precipitated polymerization method,” 2009.
    [59] L. J. Kirwan, P. D. Fawell, and W. van Bronswijk, “In situ FTIR-ATR examination of poly (acrylic acid) adsorbed onto hematite at low pH,” Langmuir, vol. 19, no. 14, pp. 5802-5807, 2003.
    [60] H. W. Chien, H. Y. Lin, C. Y. Tsai, T. Y. Chen, and W. N. Chen, “Superhydrophilic Coating with Antibacterial and Oil-Repellent Properties via NaIO4-Triggered Polydopamine/Sulfobetaine Methacrylate Polymerization,” Polymers (Basel), vol. 12, no. 9, Sep 3, 2020.
    [61] M. C. Sin, P. T. Lou, C. H. Cho, A. Chinnathambi, S. A. Alharbi, and Y. Chang, “An intuitive thermal-induced surface zwitterionization for versatile, well-controlled haemocompatible organic and inorganic materials,” Colloids Surf B Biointerfaces, vol. 127, pp. 54-64, Mar 1, 2015.
    [62] D. Garg, W. Lenk, S. Berwald, K. Lunkwitz, F. Simon, and K. J. Eichhorn, “Hydrophilization of microporous polypropylene Celgard® membranes by the chemical modification technique,” Journal of applied polymer science, vol. 60, no. 12, pp. 2087-2104, 1996.
    [63] H. Kaşgöz, S. Özgümüş, and M. Orbay, “Modified polyacrylamide hydrogels and their application in removal of heavy metal ions,” Polymer, vol. 44, no. 6, pp. 1785-1793, 2003.
    [64] K.-M. Ng, W.-K. Li, S.-K. Wo, C.-W. Tsang, and N.-L. Ma, “Silver (I) affinities of amides: a combined ab initio and experimental study,” Physical Chemistry Chemical Physics, vol. 6, no. 1, pp. 144-153, 2004.
    [65] R. Zeng, J. Cheng, S. Xu, Q. Liu, X. Wen, and P. Pi, “Synthesis and drug‐release studies of low‐fouling zwitterionic hydrogels with enhanced mechanical strength,” Journal of Applied Polymer Science, vol. 131, no. 21, 2014.
    [66] N. Govinna, P. Kaner, D. Ceasar, A. Dhungana, C. Moers, K. Son, A. Asatekin, and P. Cebe, “Electrospun fiber membranes from blends of poly (vinylidene fluoride) with fouling‐resistant zwitterionic copolymers,” Polymer International, vol. 68, no. 2, pp. 231-239, 2019.
    [67] B. B. Adhikari, M. Gurung, A. B. Chetry, H. Kawakita, and K. Ohto, “Highly selective and efficient extraction of two Pb 2+ ions with a p-tert-butylcalix [6] arene hexacarboxylic acid ligand: an allosteric effect in extraction,” RSC Advances, vol. 3, no. 48, pp. 25950-25959, 2013.
    [68] B. Yamada, "Free Radical Addition Copolymerization," Encyclopedia of Polymeric Nanomaterials, S. Kobayashi and K. Müllen, eds., pp. 1-11, Berlin, Heidelberg: Springer Berlin Heidelberg, 2014.
    [69] K. Sugiyama, "Block Copolymer Synthesis," Encyclopedia of Polymeric Nanomaterials, S. Kobayashi and K. Müllen, eds., pp. 1-10, Berlin, Heidelberg: Springer Berlin Heidelberg, 2014.
    [70] S. Uchida, "Graft Copolymer Synthesis," Encyclopedia of Polymeric Nanomaterials, S. Kobayashi and K. Müllen, eds., pp. 1-4, Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.
    [71] T. Ye, Y. Song, and Q. Zheng, “Synthesis and solution property of acrylamide-sulfobetaine copolymers,” J Colloid Polymer Science, vol. 293, no. 3, pp. 797-807, 2015.
    [72] G. Han, J. T. Liu, K. J. Lu, and T.-S. Chung, “Advanced anti-fouling membranes for osmotic power generation from wastewater via pressure retarded osmosis (PRO),” Environmental science technology, vol. 52, no. 11, pp. 6686-6694, 2018.
    [73] Z. Lei, and P. Wu, “A supramolecular biomimetic skin combining a wide spectrum of mechanical properties and multiple sensory capabilities,” Nature communications, vol. 9, no. 1, pp. 1-7, 2018.
    [74] W.-H. Kuo, M.-J. Wang, H.-W. Chien, T.-C. Wei, C. Lee, and W.-B. Tsai, “Surface modification with poly (sulfobetaine methacrylate-co-acrylic acid) to reduce fibrinogen adsorption, platelet adhesion, and plasma coagulation,” Biomacromolecules, vol. 12, no. 12, pp. 4348-4356, 2011.

    無法下載圖示 全文公開日期 2025/11/05 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE