簡易檢索 / 詳目顯示

研究生: 蔡元景
Yuan-Ching Tsai
論文名稱: 以製程參數調控中空CeO2球體磁性及表面增強拉曼特性之研究
Process Control and Study of Magnetism and SERS of Hollow Cerium Oxide Spheres
指導教授: 陳詩芸
Shih-Yun Chen
口試委員: 郭東昊
Dong-Hau Kuo
宋振銘
Jenn-Ming Song
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 61
中文關鍵詞: 缺陷結構表面增強拉曼光譜室溫鐵磁性
外文關鍵詞: defect, SERS, RTFM
相關次數: 點閱:354下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本實驗以噴霧熱裂解法合成不同摻釤濃度之中空二氧化鈰顆粒球,並利用初濕含浸法將奈米銀顆粒沉積於二氧化鈰表面。製備完成之樣品中空CeO2-Ag首先以X光繞射儀 (X-ray Diffraction, XRD)、穿透式電子顯微鏡 (Transmission electron microscopy, TEM)、X光吸收光譜(X-rays Absorption Spectroscopy,XAS) 以及顯微拉曼光譜儀 (Micro-Raman Spectrometer)分析其成分、形貌、價態變化與缺陷結構。TEM觀察指出,在球表面上所沉積的銀之數量及分佈會受中空球成份及尺寸影響。X光吸收光譜與拉曼光譜分析則指出,當銀奈米顆粒沉積於中空CeO2球表面時,Ce3+與氧空缺含量皆增加。另一方面,以R6G為待測物所得到的結果顯示,SERS效應與中空球表面的Ag顆粒之形貌有密切關係。此外,所有樣品在室溫下均顯現鐵磁特性,且其強度與取下樣品之條件有關。


In this study, all the sample was prepared by two-step process. Firstly, Hollow CeO2 spheres were synthesized by spray pyrolysis (SP) process. The deposition of Ag nanoparticles (NPs) on CeO2 sphere surface was followed via incipient wetness method. X-ray diffraction (XRD), transmission electron microscopy (TEM), X-rays absorption spectroscopy (XAS) and Raman spectroscopy were utilized to investigate the components, morphology, valence state of cations and defect structure. Raman spectrometer and vibrating sample magnetometer (VSM) was utilized to measure surface-enhanced Raman scattering (SERS) and magnetic behavior at room temperature (RT), respectively. TEM was utilized to observe Ag nanoparticles deposition on the different sample surface. Both of the size of Ag NPs and its coverage on CeO2 sphere were influenced by doping concentration and CeO2 particle size, and a further consequence to SERS effect. XAS analysis and Raman predicted that Ce3+ ratio and oxygen vacancy were increased after depositing Ag NPs. Moreover, All (H)CeO2-Ag composites were ferromagnetic at RT. Notably, the Ms value were impacted on the method of the calcined sample.

中文摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 第一章 緒論 1 前言 1 研究動機 2 第二章 文獻回顧 5 2.1 材料之特性與應用 5 2.1.1 二氧化鈰之介紹 5 2.1.2 銀的介紹 11 2.2 表面增強拉曼 12 2.2.1 表面增強拉曼簡介 12 2.2.2 表面增強拉曼原理 13 2.3 稀磁性半導體 15 2.3.1 稀磁性半導體之研究背景 15 2.3.2 稀磁性半導體之鐵磁性模型 16 2.3.3 稀磁性導體種類 22 第三章 實驗方法 24 3.1 實驗藥品 24 3.2 實驗流程 24 3.2.1 中空二氧化鈰之製備 24 3.2.2 奈米級銀顆粒之沉積 25 3.2.3 表面增強拉曼光譜檢測樣品之製備 25 3.3 性質分析 26 3.3.1 X光繞射分析 26 3.3.2 穿透式電子顯微鏡 27 3.3.3 拉曼光譜分析 27 3.3.4 X光吸收光譜 28 3.3.5 震動樣品磁譜儀 29 第四章 結果與討論 31 4.1 煆燒程序對摻釤之二氧化鈰中空球影響之微結構分析 31 4.1.1 XRD分析 31 4.1.2 SEM分析 33 4.1.3 XANES分析 33 4.1.4 Raman光譜分析 37 4.2 摻雜不同濃度釤的二氧化鈰中空球與表面奈米銀之顆粒結構分析…·40 4.2.1 XRD分析 40 4.2.2 TEM分析 41 4.2.3 XANES分析 45 4.2.4 Raman光譜分析 47 4.3 中空二氧化鈰沉積銀後之物理性質分析 48 4.3.1 表面增強拉曼光譜 48 4.3.2 磁性研究 51 第五章 結論 55 參考文獻 56

1. Fleischmann, M., P.J. Hendra, and A.J. McQuillan, Raman spectra of pyridine adsorbed at a silver electrode. Chemical Physics Letters, 1974. 26(2): p. 163-166.
2. 蕭印廷, 中空CeO2球體與奈米Ag顆粒之介面交互作用及其表面增強拉曼特性研究. 2017.
3. Schmit, V.L., et al., Lab-on-a-Bubble: Synthesis, Characterization, and Evaluation of Buoyant Gold Nanoparticle-Coated Silica Spheres. Journal of the American Chemical Society, 2012. 134(1): p. 59-62.
4. Hu, F., et al., Smart Liquid SERS Substrates based on Fe3O4/Au Nanoparticles with Reversibly Tunable Enhancement Factor for Practical Quantitative Detection. Scientific Reports, 2014. 4: p. 7204.
5. !!! INVALID CITATION !!! {}.
6. De Souza, R.A., A. Ramadan, and S. Horner, Modifying the barriers for oxygen-vacancy migration in fluorite-structured CeO2 electrolytes through strain: a computer simulation study. Energy & Environmental Science, 2012. 5(1): p. 5445-5453.
7. Song, X.L., G.Z. Qiu, and P. Qu, Advances in research on applications and synthesis methods of CeO(2) nanoparticles. Vol. 33. 2004. 29-34.
8. Patsalas, P., et al., Structure-dependent electronic properties of nanocrystalline cerium oxide films. Physical Review B, 2003. 68(3): p. 035104.
9. Sugiura, M., Oxygen Storage Materials for Automotive Catalysts: Ceria-Zirconia Solid Solutions. Vol. 7. 2003. 77-87.
10. Yinglin, L., et al., Size dependent ferromagnetism in cerium oxide (CeO 2 ) nanostructures independent of oxygen vacancies. Journal of Physics: Condensed Matter, 2008. 20(16): p. 165201.
11. Xiaobo, C., et al., Synthesis and room-temperature ferromagnetism of CeO 2 nanocrystals with nonmagnetic Ca 2+ doping. Nanotechnology, 2009. 20(11): p. 115606.
12. Trovarelli, A., Catalytic Properties of Ceria and CeO2-Containing Materials. Catalysis Reviews, 1996. 38(4): p. 439-520.
13. Oh, S.H. and C.C. Eickel, Effects of cerium addition on CO oxidation kinetics over alumina-supported rhodium catalysts. Journal of Catalysis, 1988. 112(2): p. 543-555.
14. Nunan, J.G., et al., Physicochemical properties of Ce-containing three-way catalysts and the effect of Ce on catalyst activity. Journal of Catalysis, 1992. 133(2): p. 309-324.
15. Serre, C., et al., Reactivity of Pt/Al2O3 and Pt-CeO2Al2O3 Catalysts for the Oxidation of Carbon Monoxide by Oxygen: I. Catalyst Characterization by TPR Using CO as Reducing Agent. Vol. 141. 1993. 1–8.
16. Frost, J.C., Junction effect interactions in methanol synthesis catalysts. Nature, 1988. 334: p. 577.
17. Golunski, S.E., et al., Origins of low-temperature three-way activity in Pt/CeO2. Applied Catalysis B: Environmental, 1995. 5(4): p. 367-376.
18. Morimoto, T., H. Tomonaga, and A. Mitani, Ultraviolet ray absorbing coatings on glass for automobiles. Thin Solid Films, 1999. 351(1): p. 61-65.
19. Li, R., et al., Synthesis and UV-shielding properties of ZnO- and CaO-doped CeO2 via soft solution chemical process. Solid State Ionics, 2002. 151(1): p. 235-241.
20. Yabe, S. and T. Sato, Cerium oxide for sunscreen cosmetics. Journal of Solid State Chemistry, 2003. 171(1): p. 7-11.
21. Bamwenda, G.R. and H. Arakawa, Cerium dioxide as a photocatalyst for water decomposition to O2 in the presence of Ceaq4+ and Feaq3+ species. Journal of Molecular Catalysis A: Chemical, 2000. 161(1): p. 105-113.
22. Bamwenda, G.R., et al., The photocatalytic oxidation of water to O2 over pure CeO2, WO3, and TiO2 using Fe3+ and Ce4+ as electron acceptors. Applied Catalysis A: General, 2001. 205(1): p. 117-128.
23. Sammes, N.M. and Z. Cai, Ionic conductivity of ceria/yttria stabilized zirconia electrolyte materials. Solid State Ionics, 1997. 100(1): p. 39-44.
24. Marina, O.A., et al., A solid oxide fuel cell with a gadolinia-doped ceria anode: preparation and performance. Solid State Ionics, 1999. 123(1): p. 199-208.
25. Atanasov, P.A., (1 10)Nd:KGW waveguide films grown on CeO2/Si substrates by pulsed laser deposition. Vol. 453. 2004.
26. Shirakawa, M., et al., Fabrication and characterization of a CeO2 buffer layer on c-plane and tilt-c-plane sapphire substrates. Physica C: Superconductivity, 2003. 392-396(Part 2): p. 1346-1352.
27. Izu, N., W. Shin, and N. Murayama, Fast response of resistive-type oxygen gas sensors based on nano-sized ceria powder. Sensors and Actuators B: Chemical, 2003. 93(1): p. 449-453.
28. B. Kirk, N. and J. Wood, The Effect of the Calcination Process on the Crystallite Shape of Sol–Gel Cerium Oxide Used for Glass Polishing. Vol. 30. 1995. 2171-2175.
29. L. Messing, G., S.-C. Zhang, and G. V. Jayanthi, Ceramic Powder Synthesis by Spray Pyrolysis. Vol. 76. 2005. 2707-2726.
30. Pluym, T.C., et al., Solid silver particle production by spray pyrolysis. Journal of Aerosol Science, 1993. 24(3): p. 383-392.
31. Shih, S.-J., et al., Controlled Morphological Structure of Ceria Nanoparticles Prepared by Spray Pyrolysis. Procedia Engineering, 2012. 36(Supplement C): p. 186-194.
32. Patil, P.S., Versatility of chemical spray pyrolysis technique. Materials Chemistry and Physics, 1999. 59(3): p. 185-198.
33. Pluym, T.C., et al., Silver-palladium alloy particle production by spray pyrolysis. Journal of Materials Research, 2011. 10(7): p. 1661-1673.
34. Alt, V., et al., An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement. Biomaterials, 2004. 25(18): p. 4383-4391.
35. Doering, W.E. and S. Nie, Single-Molecule and Single-Nanoparticle SERS:  Examining the Roles of Surface Active Sites and Chemical Enhancement. The Journal of Physical Chemistry B, 2002. 106(2): p. 311-317.
36. Félidj, N., et al., Optimized surface-enhanced Raman scattering on gold nanoparticle arrays. Applied Physics Letters, 2003. 82(18): p. 3095-3097.
37. Nie, S. and S.R. Emory, Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering. Science, 1997. 275(5303): p. 1102.
38. Kneipp, K., et al., Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS). Physical Review Letters, 1997. 78(9): p. 1667-1670.
39. Campion, A. and P. Kambhampati, Surface-enhanced Raman scattering. Chemical Society Reviews, 1998. 27(4): p. 241-250.
40. Jeanmaire, D.L. and R.P. Van Duyne, Surface raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1977. 84(1): p. 1-20.
41. Albrecht, M.G. and J.A. Creighton, Anomalously intense Raman spectra of pyridine at a silver electrode. Journal of the American Chemical Society, 1977. 99(15): p. 5215-5217.
42. Le Ru, E.C., et al., Surface Enhanced Raman Scattering Enhancement Factors:  A Comprehensive Study. The Journal of Physical Chemistry C, 2007. 111(37): p. 13794-13803.
43. Kelly, K.L., et al., The Optical Properties of Metal Nanoparticles:  The Influence of Size, Shape, and Dielectric Environment. The Journal of Physical Chemistry B, 2003. 107(3): p. 668-677.
44. Haes, A.J. and R.P. Van Duyne, A unified view of propagating and localized surface plasmon resonance biosensors. Analytical and Bioanalytical Chemistry, 2004. 379(7): p. 920-930.
45. Hong, Y., et al., Nanobiosensors based on localized surface plasmon resonance for biomarker detection. J. Nanomaterials, 2012. 2012: p. 111-111.
46. Xu, H., et al., Spectroscopy of Single Hemoglobin Molecules by Surface Enhanced Raman Scattering. Physical Review Letters, 1999. 83(21): p. 4357-4360.
47. Camden, J.P., et al., Probing the Structure of Single-Molecule Surface-Enhanced Raman Scattering Hot Spots. Journal of the American Chemical Society, 2008. 130(38): p. 12616-12617.
48. Kumar, C.S.S.R., Raman Spectroscopy for Nanomaterials Characterization. 2012: Springer Berlin Heidelberg.
49. Hao, E. and G.C. Schatz, Electromagnetic fields around silver nanoparticles and dimers. The Journal of Chemical Physics, 2003. 120(1): p. 357-366.
50. Zheng, N., introduction to dilute magnetic semiconductors. Solid State II, 2008.
51. 胡裕民, III-V 稀磁性半導體薄膜之研究與發展. 物理雙月刊, 2004. vol. 26: p. 587-598.
52. Ohno, H., Making Nonmagnetic Semiconductors Ferromagnetic. Science, 1998. 281(5379): p. 951.
53. Litvinov, V.I. and V.K. Dugaev, Ferromagnetism in Magnetically Doped III-V Semiconductors. Physical Review Letters, 2001. 86(24): p. 5593-5596.
54. Berciu, M. and R.N. Bhatt, Effects of Disorder on Ferromagnetism in Diluted Magnetic Semiconductors. Physical Review Letters, 2001. 87(10): p. 107203.
55. Akai, H., Ferromagnetism and Its Stability in the Diluted Magnetic Semiconductor (In, Mn)As. Physical Review Letters, 1998. 81(14): p. 3002-3005.
56. König, J., H.-H. Lin, and A.H. MacDonald, Theory of Diluted Magnetic Semiconductor Ferromagnetism. Physical Review Letters, 2000. 84(24): p. 5628-5631.
57. König, J., H.H. Lin, and A.H. MacDonald, K\"onig, Lin, and MacDonald Reply. Physical Review Letters, 2001. 86(24): p. 5637-5637.
58. Litvinov, V. and V. Dugaev, Ferromagnetism in Magnetically Doped III-V Semiconductors. Vol. 86. 2001. 5593-6.
59. Schwartz, D.R.G.D.A., Reversible 300K Ferromagnetic Ordering in a Diluted Magnetic Semiconductor. Advanced Materials, 2004. vol. 16: p. p. 23.
60. Coey, J.M.D., M. Venkatesan, and C.B. Fitzgerald, Donor impurity band exchange in dilute ferromagnetic oxides. Nature Materials, 2005. 4: p. 173.
61. Paunovic, N., et al., Suppression of inherent ferromagnetism in Pr-doped CeO2 nanocrystals. Nanoscale, 2012. 4(17): p. 5469-5476.
62. Alsaad, A. and I.A. Qattan, Comparative study of magnetic properties of dilute Fe doped with transition magnetic ions and GaN, InN doped with rare-earth magnetic ions. Physica B: Condensed Matter, 2014. 432: p. 77-83.
63. Reed, M.L., et al., Room temperature ferromagnetic properties of (Ga, Mn)N. Applied Physics Letters, 2001. 79(21): p. 3473-3475.
64. Saeki, H., H. Tabata, and T. Kawai, Magnetic and electric properties of vanadium doped ZnO films. Solid State Communications, 2001. 120(11): p. 439-443.
65. Park, W.K., et al., Semiconducting and ferromagnetic behavior of sputtered Co-doped TiO2 thin films above room temperature. Journal of Applied Physics, 2002. 91(10): p. 8093-8095.
66. Matsumoto, Y., et al., Room-Temperature Ferromagnetism in Transparent Transition Metal-Doped Titanium Dioxide. Science, 2001. 291(5505): p. 854.
67. Radovic, M., et al., Effect of Fe2+ (Fe3+) Doping on Structural Properties omicrf CeO2 Nanocrystals. Vol. 116. 2009.
68. Sharma, S.K., et al., Room temperature ferromagnetism in Fe-doped CeO2 thin films grown on LaAlO3 (001). Thin Solid Films, 2010. 519(1): p. 410-413.
69. Patterson, A.L., The Scherrer Formula for X-Ray Particle Size Determination. Physical Review, 1939. 56(10): p. 978-982.
70. Koningsberger, D.C. and R. Prins, X-ray absorption: principles, applications, techniques of EXAFS, SEXAFS and XANES. 1987.
71. Sayers, D.E., E.A. Stern, and F.W. Lytle, New Technique for Investigating Noncrystalline Structures: Fourier Analysis of the Extended X-Ray\char22{}Absorption Fine Structure. Physical Review Letters, 1971. 27(18): p. 1204-1207.
72. Chen, S.-Y., et al., Spectromicroscopic evidence of interstitial and substitutional dopants in association with oxygen vacancies in Sm-doped ceria nanoparticles. Physical Chemistry Chemical Physics, 2014. 16(7): p. 3274-3281.
73. Nachimuthu, P., et al., The Study of Nanocrystalline Cerium Oxide by X-Ray Absorption Spectroscopy. Journal of Solid State Chemistry, 2000. 149(2): p. 408-413.
74. Popović, Z.V., et al., Raman scattering on nanomaterials and nanostructures. Annalen der Physik, 2011. 523(1-2): p. 62-74.
75. McBride, J.R., et al., Raman and x‐ray studies of Ce1−xRExO2−y, where RE=La, Pr, Nd, Eu, Gd, and Tb. Journal of Applied Physics, 1994. 76(4): p. 2435-2441.
76. Nakajima, A., A. Yoshihara, and M. Ishigame, Defect-induced Raman spectra in doped ${\mathrm{CeO}}_{2}$. Physical Review B, 1994. 50(18): p. 13297-13307.
77. Taniguchi, T., et al., Identifying Defects in Ceria-Based Nanocrystals by UV Resonance Raman Spectroscopy. The Journal of Physical Chemistry C, 2009. 113(46): p. 19789-19793.
78. Choudhury, B. and A. Choudhury, Lattice distortion and corresponding changes in optical properties of CeO2 nanoparticles on Nd doping. Current Applied 1. Fleischmann, M., P.J. Hendra, and A.J. McQuillan, Raman spectra of pyridine adsorbed at a silver electrode. Chemical Physics Letters, 1974. 26(2): p. 163-166.
2. 蕭印廷, 中空CeO2球體與奈米Ag顆粒之介面交互作用及其表面增強拉曼特性研究. 2017.
3. Schmit, V.L., et al., Lab-on-a-Bubble: Synthesis, Characterization, and Evaluation of Buoyant Gold Nanoparticle-Coated Silica Spheres. Journal of the American Chemical Society, 2012. 134(1): p. 59-62.
4. Hu, F., et al., Smart Liquid SERS Substrates based on Fe3O4/Au Nanoparticles with Reversibly Tunable Enhancement Factor for Practical Quantitative Detection. Scientific Reports, 2014. 4: p. 7204.
5. !!! INVALID CITATION !!! {}.
6. De Souza, R.A., A. Ramadan, and S. Horner, Modifying the barriers for oxygen-vacancy migration in fluorite-structured CeO2 electrolytes through strain: a computer simulation study. Energy & Environmental Science, 2012. 5(1): p. 5445-5453.
7. Song, X.L., G.Z. Qiu, and P. Qu, Advances in research on applications and synthesis methods of CeO(2) nanoparticles. Vol. 33. 2004. 29-34.
8. Patsalas, P., et al., Structure-dependent electronic properties of nanocrystalline cerium oxide films. Physical Review B, 2003. 68(3): p. 035104.
9. Sugiura, M., Oxygen Storage Materials for Automotive Catalysts: Ceria-Zirconia Solid Solutions. Vol. 7. 2003. 77-87.
10. Yinglin, L., et al., Size dependent ferromagnetism in cerium oxide (CeO 2 ) nanostructures independent of oxygen vacancies. Journal of Physics: Condensed Matter, 2008. 20(16): p. 165201.
11. Xiaobo, C., et al., Synthesis and room-temperature ferromagnetism of CeO 2 nanocrystals with nonmagnetic Ca 2+ doping. Nanotechnology, 2009. 20(11): p. 115606.
12. Trovarelli, A., Catalytic Properties of Ceria and CeO2-Containing Materials. Catalysis Reviews, 1996. 38(4): p. 439-520.
13. Oh, S.H. and C.C. Eickel, Effects of cerium addition on CO oxidation kinetics over alumina-supported rhodium catalysts. Journal of Catalysis, 1988. 112(2): p. 543-555.
14. Nunan, J.G., et al., Physicochemical properties of Ce-containing three-way catalysts and the effect of Ce on catalyst activity. Journal of Catalysis, 1992. 133(2): p. 309-324.
15. Serre, C., et al., Reactivity of Pt/Al2O3 and Pt-CeO2Al2O3 Catalysts for the Oxidation of Carbon Monoxide by Oxygen: I. Catalyst Characterization by TPR Using CO as Reducing Agent. Vol. 141. 1993. 1–8.
16. Frost, J.C., Junction effect interactions in methanol synthesis catalysts. Nature, 1988. 334: p. 577.
17. Golunski, S.E., et al., Origins of low-temperature three-way activity in Pt/CeO2. Applied Catalysis B: Environmental, 1995. 5(4): p. 367-376.
18. Morimoto, T., H. Tomonaga, and A. Mitani, Ultraviolet ray absorbing coatings on glass for automobiles. Thin Solid Films, 1999. 351(1): p. 61-65.
19. Li, R., et al., Synthesis and UV-shielding properties of ZnO- and CaO-doped CeO2 via soft solution chemical process. Solid State Ionics, 2002. 151(1): p. 235-241.
20. Yabe, S. and T. Sato, Cerium oxide for sunscreen cosmetics. Journal of Solid State Chemistry, 2003. 171(1): p. 7-11.
21. Bamwenda, G.R. and H. Arakawa, Cerium dioxide as a photocatalyst for water decomposition to O2 in the presence of Ceaq4+ and Feaq3+ species. Journal of Molecular Catalysis A: Chemical, 2000. 161(1): p. 105-113.
22. Bamwenda, G.R., et al., The photocatalytic oxidation of water to O2 over pure CeO2, WO3, and TiO2 using Fe3+ and Ce4+ as electron acceptors. Applied Catalysis A: General, 2001. 205(1): p. 117-128.
23. Sammes, N.M. and Z. Cai, Ionic conductivity of ceria/yttria stabilized zirconia electrolyte materials. Solid State Ionics, 1997. 100(1): p. 39-44.
24. Marina, O.A., et al., A solid oxide fuel cell with a gadolinia-doped ceria anode: preparation and performance. Solid State Ionics, 1999. 123(1): p. 199-208.
25. Atanasov, P.A., (1 10)Nd:KGW waveguide films grown on CeO2/Si substrates by pulsed laser deposition. Vol. 453. 2004.
26. Shirakawa, M., et al., Fabrication and characterization of a CeO2 buffer layer on c-plane and tilt-c-plane sapphire substrates. Physica C: Superconductivity, 2003. 392-396(Part 2): p. 1346-1352.
27. Izu, N., W. Shin, and N. Murayama, Fast response of resistive-type oxygen gas sensors based on nano-sized ceria powder. Sensors and Actuators B: Chemical, 2003. 93(1): p. 449-453.
28. B. Kirk, N. and J. Wood, The Effect of the Calcination Process on the Crystallite Shape of Sol–Gel Cerium Oxide Used for Glass Polishing. Vol. 30. 1995. 2171-2175.
29. L. Messing, G., S.-C. Zhang, and G. V. Jayanthi, Ceramic Powder Synthesis by Spray Pyrolysis. Vol. 76. 2005. 2707-2726.
30. Pluym, T.C., et al., Solid silver particle production by spray pyrolysis. Journal of Aerosol Science, 1993. 24(3): p. 383-392.
31. Shih, S.-J., et al., Controlled Morphological Structure of Ceria Nanoparticles Prepared by Spray Pyrolysis. Procedia Engineering, 2012. 36(Supplement C): p. 186-194.
32. Patil, P.S., Versatility of chemical spray pyrolysis technique. Materials Chemistry and Physics, 1999. 59(3): p. 185-198.
33. Pluym, T.C., et al., Silver-palladium alloy particle production by spray pyrolysis. Journal of Materials Research, 2011. 10(7): p. 1661-1673.
34. Alt, V., et al., An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement. Biomaterials, 2004. 25(18): p. 4383-4391.
35. Doering, W.E. and S. Nie, Single-Molecule and Single-Nanoparticle SERS:  Examining the Roles of Surface Active Sites and Chemical Enhancement. The Journal of Physical Chemistry B, 2002. 106(2): p. 311-317.
36. Félidj, N., et al., Optimized surface-enhanced Raman scattering on gold nanoparticle arrays. Applied Physics Letters, 2003. 82(18): p. 3095-3097.
37. Nie, S. and S.R. Emory, Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering. Science, 1997. 275(5303): p. 1102.
38. Kneipp, K., et al., Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS). Physical Review Letters, 1997. 78(9): p. 1667-1670.
39. Campion, A. and P. Kambhampati, Surface-enhanced Raman scattering. Chemical Society Reviews, 1998. 27(4): p. 241-250.
40. Jeanmaire, D.L. and R.P. Van Duyne, Surface raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1977. 84(1): p. 1-20.
41. Albrecht, M.G. and J.A. Creighton, Anomalously intense Raman spectra of pyridine at a silver electrode. Journal of the American Chemical Society, 1977. 99(15): p. 5215-5217.
42. Le Ru, E.C., et al., Surface Enhanced Raman Scattering Enhancement Factors:  A Comprehensive Study. The Journal of Physical Chemistry C, 2007. 111(37): p. 13794-13803.
43. Kelly, K.L., et al., The Optical Properties of Metal Nanoparticles:  The Influence of Size, Shape, and Dielectric Environment. The Journal of Physical Chemistry B, 2003. 107(3): p. 668-677.
44. Haes, A.J. and R.P. Van Duyne, A unified view of propagating and localized surface plasmon resonance biosensors. Analytical and Bioanalytical Chemistry, 2004. 379(7): p. 920-930.
45. Hong, Y., et al., Nanobiosensors based on localized surface plasmon resonance for biomarker detection. J. Nanomaterials, 2012. 2012: p. 111-111.
46. Xu, H., et al., Spectroscopy of Single Hemoglobin Molecules by Surface Enhanced Raman Scattering. Physical Review Letters, 1999. 83(21): p. 4357-4360.
47. Camden, J.P., et al., Probing the Structure of Single-Molecule Surface-Enhanced Raman Scattering Hot Spots. Journal of the American Chemical Society, 2008. 130(38): p. 12616-12617.
48. Kumar, C.S.S.R., Raman Spectroscopy for Nanomaterials Characterization. 2012: Springer Berlin Heidelberg.
49. Hao, E. and G.C. Schatz, Electromagnetic fields around silver nanoparticles and dimers. The Journal of Chemical Physics, 2003. 120(1): p. 357-366.
50. Zheng, N., introduction to dilute magnetic semiconductors. Solid State II, 2008.
51. 胡裕民, III-V 稀磁性半導體薄膜之研究與發展. 物理雙月刊, 2004. vol. 26: p. 587-598.
52. Ohno, H., Making Nonmagnetic Semiconductors Ferromagnetic. Science, 1998. 281(5379): p. 951.
53. Litvinov, V.I. and V.K. Dugaev, Ferromagnetism in Magnetically Doped III-V Semiconductors. Physical Review Letters, 2001. 86(24): p. 5593-5596.
54. Berciu, M. and R.N. Bhatt, Effects of Disorder on Ferromagnetism in Diluted Magnetic Semiconductors. Physical Review Letters, 2001. 87(10): p. 107203.
55. Akai, H., Ferromagnetism and Its Stability in the Diluted Magnetic Semiconductor (In, Mn)As. Physical Review Letters, 1998. 81(14): p. 3002-3005.
56. König, J., H.-H. Lin, and A.H. MacDonald, Theory of Diluted Magnetic Semiconductor Ferromagnetism. Physical Review Letters, 2000. 84(24): p. 5628-5631.
57. König, J., H.H. Lin, and A.H. MacDonald, K\"onig, Lin, and MacDonald Reply. Physical Review Letters, 2001. 86(24): p. 5637-5637.
58. Litvinov, V. and V. Dugaev, Ferromagnetism in Magnetically Doped III-V Semiconductors. Vol. 86. 2001. 5593-6.
59. Schwartz, D.R.G.D.A., Reversible 300K Ferromagnetic Ordering in a Diluted Magnetic Semiconductor. Advanced Materials, 2004. vol. 16: p. p. 23.
60. Coey, J.M.D., M. Venkatesan, and C.B. Fitzgerald, Donor impurity band exchange in dilute ferromagnetic oxides. Nature Materials, 2005. 4: p. 173.
61. Paunovic, N., et al., Suppression of inherent ferromagnetism in Pr-doped CeO2 nanocrystals. Nanoscale, 2012. 4(17): p. 5469-5476.
62. Alsaad, A. and I.A. Qattan, Comparative study of magnetic properties of dilute Fe doped with transition magnetic ions and GaN, InN doped with rare-earth magnetic ions. Physica B: Condensed Matter, 2014. 432: p. 77-83.
63. Reed, M.L., et al., Room temperature ferromagnetic properties of (Ga, Mn)N. Applied Physics Letters, 2001. 79(21): p. 3473-3475.
64. Saeki, H., H. Tabata, and T. Kawai, Magnetic and electric properties of vanadium doped ZnO films. Solid State Communications, 2001. 120(11): p. 439-443.
65. Park, W.K., et al., Semiconducting and ferromagnetic behavior of sputtered Co-doped TiO2 thin films above room temperature. Journal of Applied Physics, 2002. 91(10): p. 8093-8095.
66. Matsumoto, Y., et al., Room-Temperature Ferromagnetism in Transparent Transition Metal-Doped Titanium Dioxide. Science, 2001. 291(5505): p. 854.
67. Radovic, M., et al., Effect of Fe2+ (Fe3+) Doping on Structural Properties omicrf CeO2 Nanocrystals. Vol. 116. 2009.
68. Sharma, S.K., et al., Room temperature ferromagnetism in Fe-doped CeO2 thin films grown on LaAlO3 (001). Thin Solid Films, 2010. 519(1): p. 410-413.
69. Patterson, A.L., The Scherrer Formula for X-Ray Particle Size Determination. Physical Review, 1939. 56(10): p. 978-982.
70. Koningsberger, D.C. and R. Prins, X-ray absorption: principles, applications, techniques of EXAFS, SEXAFS and XANES. 1987.
71. Sayers, D.E., E.A. Stern, and F.W. Lytle, New Technique for Investigating Noncrystalline Structures: Fourier Analysis of the Extended X-Ray\char22{}Absorption Fine Structure. Physical Review Letters, 1971. 27(18): p. 1204-1207.
72. Chen, S.-Y., et al., Spectromicroscopic evidence of interstitial and substitutional dopants in association with oxygen vacancies in Sm-doped ceria nanoparticles. Physical Chemistry Chemical Physics, 2014. 16(7): p. 3274-3281.
73. Nachimuthu, P., et al., The Study of Nanocrystalline Cerium Oxide by X-Ray Absorption Spectroscopy. Journal of Solid State Chemistry, 2000. 149(2): p. 408-413.
74. Popović, Z.V., et al., Raman scattering on nanomaterials and nanostructures. Annalen der Physik, 2011. 523(1-2): p. 62-74.
75. McBride, J.R., et al., Raman and x‐ray studies of Ce1−xRExO2−y, where RE=La, Pr, Nd, Eu, Gd, and Tb. Journal of Applied Physics, 1994. 76(4): p. 2435-2441.
76. Nakajima, A., A. Yoshihara, and M. Ishigame, Defect-induced Raman spectra in doped ${\mathrm{CeO}}_{2}$. Physical Review B, 1994. 50(18): p. 13297-13307.
77. Taniguchi, T., et al., Identifying Defects in Ceria-Based Nanocrystals by UV Resonance Raman Spectroscopy. The Journal of Physical Chemistry C, 2009. 113(46): p. 19789-19793.
78. Choudhury, B. and A. Choudhury, Lattice distortion and corresponding changes in optical properties of CeO2 nanoparticles on Nd doping. Current Applied Physics, 2013. 13(1): p. 217-223.
79. Piticharoenphun, S., et al., Agglomeration of Silver Nanoparticles in Sea Urchin. Vol. 1. 2012.
80. Kong, D., et al., Growth, Structure, and Stability of Ag on CeO2(111): Synchrotron Radiation Photoemission Studies. The Journal of Physical Chemistry C, 2011. 115(14): p. 6715-6725.

QR CODE