簡易檢索 / 詳目顯示

研究生: 黃芷翎
Jhih-Ling Huang
論文名稱: 聚乳酸/魚鱗粉骨生醫複合材料之開發研究
Development of Poly (lactic acid)/Scales Powder Composites Apply to Bone Biomedical Materials
指導教授: 楊銘乾
Ming-Chien Yang
口試委員: 吳昌謀
Chang-Mou Wu
鄒智揮
Chi-Hui Tsou
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 79
中文關鍵詞: 聚乳酸魚鱗粉氫氧基磷灰石
外文關鍵詞: Polylactic acid, Scales Powder, Hydroapatite
相關次數: 點閱:244下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以融熔混煉方式製備聚乳酸/魚鱗粉 (PLA/SP)複合材料,其中 SP 重量百分比含量為 0 至 50 wt%。以熱重損失分析儀 TGA 分析熱裂解溫度、熱殘餘量和 SP 中明膠和氫氧基磷灰石的比例;此外DSC 分析以速率 2 ℃/min 探討熔融結晶及熔融行為;並以 Avrami equation 描述等溫結晶動力學,分析結晶速率和平衡熔點;以 XRD、FTIR 分析 SP 特徵峰和官能基證明其成分為明膠和氫氧基磷灰石;以拉伸試驗測量機械性質的變化;將樣品浸泡在 PBS 中 4 週、8 週、12週做穩定性分析,並測量其重量損失計算降解率;用 SEM 觀察複合材料的斷面和穩定性分析後的複合材料表面、斷面;由生物相容性測試可看出添加 SP 與否不會影響 PLA 的生物相容性,並由細胞貼附測試觀察細胞貼附生長情形,可望此複合材料能應用於骨骼修復之射出級醫療產品。


    In this study, polylactic acid (PLA)/scales powder (SP) composites were prepared by melt blending. The SP content of composites are from 0 to 50 wt%. The thermal stability and the residual amount of the PLA and the PLA/SP composites were studied by using a Thermo gravimetric Analyzer. Moreover, differential scanning calorimeter (DSC) analysis at a rate of 2 ℃/min to discussion melt crystallization behavior, melting behavior and isothermal crystallization kinetics. Increased concentration of SP reduced crystal formation of PLA as seen by the peak intensity of X-ray diffraction (XRD). The functional groups of SP and PLA were analyzed by Fourier transform infrared spectroscopy (FTIR). The tensile test is to find the measurement of various mechanical properties. The samples were soaked in phosphate buffer solution (PBS) for 4 weeks, 8 weeks and 12 weeks to study stability analysis, and measuring degradation rate. Microstructure characterization of cross-sections of the PLA and the PLA/SP composites were observed by scanning electron microscopy (SEM). The in vitro cytotoxicity test show that the SP adding would not affect the PLA biocompatibility by L929. We expected this composites can be used in bone repair of injection grade medical products.

    摘要 Ⅰ ABSTRACT Ⅱ 致謝 Ⅲ 總目錄 Ⅳ 圖目錄 Ⅶ 表目錄 Ⅸ 第一章 緒論 1 1-1 前言 1 1-2 研究目的 2 第二章 研究背景 3 2-1熔融混煉原理與等溫結晶動力學 3 2-1-1 熔融混煉原理 3 2-1-2 等溫結晶動力學 5 2-1-2-1 晶體成長 5 2-1-2-2 Avrami方程式 8 2-1-2-3 平衡熔點 10 2-2 骨組織工程與生醫材料發展 11 2-2-1 組織工程 11 2-2-2 骨組織與骨再生 13 2-2-3 骨移植及骨修補 16 2-2-4 骨生醫材料的發展 18 2-3 實驗材料介紹 21 2-3-1 聚乳酸 21 2-3-2 台灣鯛魚鱗粉 23 2-3-3 氫氧基磷灰石 24 2-3-4 明膠 26 第三章 實驗 27 3-1 實驗材料與藥品 27 3-2實驗儀器 28 3-3實驗流程 29 3-4材料配置 30 3-4-1熔融混煉步驟 30 3-4-2自動熱壓成型步驟 30 3-5材料物性測試 31 3-5-1熱重損失分析 31 3-5-2差示掃描量熱分析 32 3-5-3 X光繞射分析 33 3-5-4傅立葉紅外線光譜分析 33 3-5-5掃描式電子顯微鏡分析與能量分散譜分析 34 3-5-6拉伸強力分析 34 3-5-7穩定度測試分析 35 3-5-8接觸角分析 36 3-6細胞相容性 37 3-6-1細胞株來源與培養條件 37 3-6-2細胞株繼代與冷凍保存 37 3-6-3 MTT細胞活性測試 38 3-6-4體外細胞毒性 39 3-6-5細胞表面型態分析 40 第四章 結果與討論 41 4-1熱重損失分析 41 4-2熱學性質分析 43 4-3等溫結晶動力學 46 4-3-1結晶速率分析 46 4-3-2 Avrami分析 49 4-3-3 平衡熔點 53 4-4 X光繞射分析 55 4-5傅立葉紅外光譜分析 57 4-6拉伸強力分析 59 4-7粒徑&表面結構分析 60 4-8能量分散譜分析 62 4-9穩定度測試 65 4-10接觸角分析 69 4-11體外細胞毒性測試 70 4-12細胞貼附測試 71 第五章 結論 72 第六章 參考文獻 76

    [1] 郭弘德, "插門型分配式混合元件於單螺桿押出機之最佳化設計", 國立交通大學應用化學研究所碩士論文, 1-2,5, (2002).
    [2] D. Thomas, R. David, Polymer Science, 22, 821-900, (1982).
    [3] 林建宏, "以混煉法製備ABS樹脂/奈米二氧化鈦複合材料之研究", 中國文化大學化學工程與材料工程學系奈米材料研究所碩士論文, 18-20, (2013).
    [4] H. L. Frisch, Time Lag in Nucleation. Journal of Chemical Physics, 27, 90, (1957).
    [5] R. P. Andres, M. Boudart, Time Lag in Multistate Kinetics: Nucleation. Journal of Chemical Physics, 42, 2057, (1965).
    [6] K. Kaji, K. Nishida, et al., Spinodal crystallization of polymers: crystallization from the unstable melt. Adv. Polym. Sci.,191,187, (2005).
    [7] 溫禮鴻,"聚丙烯/聚對苯二甲酸丙二酯摻合體之相容性及結晶行為研究", 國立台北科技大學有機高分子研究所碩士論文, 22, (2005).
    [8] Wengui W, Guohua C, et al., Crystallization kinetics and melting behaviors of nylon 6/foliated graphite nanocomposites. Polymer, 44(26), 8119-8132, (2003).
    [9] Sang Ho P, Seung Goo L, et al., Isothermal crystallization behavior and mechanical properties of polylactide/carbon nanotube nanocomposites. Composites Part A: Applied Science and Manufacturing, 46(0), 11-18, (2013).
    [10] Xiaolei C, Chunzhong Li, et al., Isothermal crystallization kinetics and melting behaviour of PET/ATO nanocomposites prepared by in situ polymerization. European Polymer Journal, 43(8), 3177-3186, (2007).
    [11] B. Wunderlich, Macromolecular Physics, Vol. 3, Academic Press, New York (1976).
    [12] Ren, M., et al., "Crystallization kinetics and morphology of poly(butylene succinate-co-adipate)." Journal of Polymer Science Part B: Polymer Physics, 43(22), 3231-3241, (2005).
    [13] Amini, A. R., et al., "Bone Tissue Engineering: Recent Advances and Challenges.", 40(5), 363-408, (2012).
    [14] Bose, S., et al., "Recent advances in bone tissue engineering scaffolds." Trends in Biotechnology, 30(10), 546-554, (2012).
    [15] Fernandez-Yague, M. A., et al., "Biomimetic approaches in bone tissue engineering: Integrating biological and physicomechanical strategies." Advanced Drug Delivery Reviews, 84, 1-29, (2015).
    [16] Li, X., et al., "Nanostructured scaffolds for bone tissue engineering." Journal of Biomedical Materials Research Part A, 101A(8), 2424-2435, (2013).
    [17] 李圳傑, "藉臭氧改質製備具骨誘導作用之聚乳酸基材", 國立台灣科技大學化學工程系碩士論文, (2006).
    [18] Kokubo, S., et al., "Bone regeneration by recombinant human bone morphogenetic protein-2 and a novel biodegradable carrier in a rabbit ulnar defect model." Biomaterials, 24(9), 1643-1651, (2003).
    [19] Imranul Alam, M., et al., "Evaluation of ceramics composed of different hydroxyapatite to tricalcium phosphate ratios as carriers for rhBMP-2." Biomaterials, 22(12), 1643-1651, (2001).
    [20] Weinand, C., et al., "Hydrogel-β-TCP scaffolds and stem cells for tissue engineering bone." Bone, 38(4), 555-563, (2006).
    [21] Saito, N., K. Takaoka, "New synthetic biodegradable polymers as BMP carriers for bone tissue engineering." Biomaterials, 24(13), 2287-2293, (2003).
    [22] Kikuchi, M., et al., "Self-organization mechanism in a bone-like hydroxyapatite/collagen nanocomposite synthesized in vitro and its biological reaction in vivo." Biomaterials, 22(13), 1705-1711, (2001).
    [23] Liu, Y., et al., "Review: Development of clinically relevant scaffolds for vascularised bone tissue engineering." Biotechnology Advances, 31(5), 688-705, (2013).
    [24] Hollinger, J. O., K. Leong, "Poly(α-hydroxy acids): carriers for bone morphogenetic proteins." Biomaterials, 17(2), 187-194, (1996).
    [25] 姚其智, "水產廢棄物應用於骨科材料之開發與研究-以台灣鯛為例", 亞東技術學院材料與纖維系應用科技碩士班碩士論文, (2015).
    [26] Liu, J., et al., "The influence of pH and temperature on the morphology of hydroxyapatite synthesized by hydrothermal method." Ceramics International, 29(6), 629-633, (2003).
    [27] Fathi, M. H., et al., "Preparation and bioactivity evaluation of bone-like hydroxyapatite nanopowder." Journal of Materials Processing Technology, 202(1–3), 536-542, (2008).
    [28] Wilson, A.D., Prosser, H.J., Powis, D.M., "Mechanism of Adhesion of Polyelectrolyte Cements to Hydroxyapatite." Journal of Dental Research, vol. 62, 590-592, (1983).
    [29] 楊人龍, "台灣鯛魚皮膠原蛋白、明膠和膠原蛋白水解液之特性研究與比較", 國立成功大學化學研究所碩士論文, (2008).
    [30] Liu, H., et al., "A study on a chitosan-gelatin-hyaluronic acid scaffold as artificial skin in vitro and its tissue engineering applications." Journal of Biomaterials Science, Polymer Edition, 15(1), 25-40, (2004).
    [31] Kim, H.-W., et al., "Stimulation of osteoblast responses to biomimetic nanocomposites of gelatin–hydroxyapatite for tissue engineering scaffolds." Biomaterials, 26(25), 5221-5230, (2005).
    [32] Zhao, F., et al., "Preparation and histological evaluation of biomimetic three-dimensional hydroxyapatite/chitosan-gelatin network composite scaffolds." Biomaterials, 23(15), 3227-3234, (2002).
    [33] Das, K., et al., "Crystalline morphology of PLA/clay nanocomposite films and its correlation with other properties." Journal of Applied Polymer Science, 118(1), 143-151, (2010).
    [34] Hughes, J., et al., "Improved flexibility of thermally stable poly-lactic acid (PLA)." Carbohydrate Polymers, 88(1), 165-172, (2012).
    [35] Chang, M. C., et al., "Preparation of hydroxyapatite-gelatin nanocomposite." Biomaterials, 24(17), 2853-2862, (2003).
    [36] Shu, C., et al., "Synthesis and sintering of nanocrystalline hydroxyapatite powders by gelatin-based precipitation method." Ceramics International, 33(2), 193-196, (2007).
    [37] Chen, M., et al., "Preparation of Gelatin coated hydroxyapatite nanorods and the stability of its aqueous colloidal." Applied Surface Science, 254(9), 2730-2735, (2008).
    [38] Zhao, Y.-Q., et al., "Nanodiamond/poly (lactic acid) nanocomposites: Effect of nanodiamond on structure and properties of poly (lactic acid)." Composites Part B: Engineering, 41(8), 646-653, (2010).
    [39] Chang, M. C. and W. H. Douglas, "Cross-linkage of hydroxyapatite/gelatin nanocomposite using imide-based zero-length cross-linker." Journal of Materials Science: Materials in Medicine, 18(10), 2045-2051, (2007).

    QR CODE