簡易檢索 / 詳目顯示

研究生: 劉正舜
Zheng-Shun Liu
論文名稱: 矽線波導光濾波元件之設計與製程探討
Analysis of Design and Fabrication on Silicon Wire Optical Filter
指導教授: 徐世祥
Shih-Hsiang Hsu
口試委員: 莊敏宏
Miin-Horng Juang
王倫
Lon A. Wang
何文章
Wen-Jeng Ho
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 106
中文關鍵詞: 矽線波導陣列波導光柵階梯光柵分波多工空間域光學同調斷層掃描
外文關鍵詞: Silicon Wire, Arrayed Waveguide Grating, Echelle Grating, Wavelength Division Multiplexing, Spectral Domain Optical Coherence Tomography
相關次數: 點閱:348下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 陣列波導光柵(AWG)與階梯光柵(Echelle Grating)通常用於分波多工(WDM)系統光訊號的多工及解多工處理,兩種元件運作原理都基於光陣列的干涉,但路徑之間延遲是以不同方式實現的。本論文首先介紹這兩種光濾波元件基本原理與模擬分析方法,接著特別討論AWG於生醫領域之空間域光學同調斷層掃描(SD-OCT)系統之應用。詳細展示元件設計優化過程,並進一步結合多模干涉儀(MMI)作為輸入端口,以得到平頂帶寬的輸出頻譜。經由商業模擬軟體Photon Design中之EPIPPROP與FIMMPROP軟體進行模擬,分別設計密波長多工(DWDM)及粗波長多工(CWDM)功能的光元件。
    設計之元件除了於比利時微電子研究中心(IMEC)進行代工外,更於台灣半導體研究中心(TSRI)進行製程的研發。我們也將探討使用E-beam電子束直寫系統與I-line光學步進機,來製作矽線波導為主之光元件,並使用乾氧製程改善波導側壁粗糙度來降低傳輸損耗。
    本論文成功使用I-line光學步進機製作出CWDM與DWDM功能之AWG元件,並量測出其於C-band波段下之通道間距分別為19 nm與0.75 nm。更進一步在改善波導側壁粗糙度後,量測出E-beam製程直波導於波長為1550 nm時,傳播損耗為2.93 dB/cm。


    Arrayed Waveguide Grating (AWG) and Echelle Grating (EG) are commonly utilized for multiplexing and demultiplexing in wavelength division multiplexing (WDM) communications. Both filter devices are using optical array interference, but the implementation of light path delay is different. Firstly, the principle and simulation for AWG and EG will be introduced in this thesis. And then the AWG application in spectral domain optical coherence tomography (SD-OCT) is going to be further discussed. Next, the process design to improve the filter device performance will be demonstrated. Additionally, the AWG with a multimode interference (MMI) at the entrance port of the waveguide array could be illustrated to obtain the flattened spectral response, followed by the dense and coarse WDM demultiplexers. All simulations were executed by Photon Design’s commercial software through EPIPPROP and FIMMPROP.
    The silicon wire based photonic devices mentioned in the thesis are not only sent to the Interuniversity Microelectronics Centre (IMEC) for process, but also fabricated in Taiwan Semiconductor Research Institute (TSRI). In TSRI. the process between the I-line stepper and electron beam writing system will be further discussed and demonstrated. The waveguide sidewall roughness improvement is analyzed on dry thermal oxidation.
    In this thesis, the AWG channel spacing for CWDM and DWDM were successfully demonstrated as 19 nm and 0.75 nm in the C-band, respectively, using the I-line stepper lithography. Furthermore, the silicon wire sidewall roughness was improved in the E-beam process to achieve the propagation loss of 2.93 dB/cm in the 1550-nm wavelength range.

    摘要 ABSTRACT 誌謝 目錄 圖目錄 表目錄 第1章 緒論 1.1. 簡介 1.2. 研究動機 1.3. 論文架構 第2章 波導特性及濾波元件應用介紹 2.1. 矽光波導 2.2. 單、多模條件 2.3. 雙折射效應(Birefringence Effect) 2.4. 波導傳輸損耗 2.4.1. 吸收損耗(Absorption Loss) 2.4.2. 洩漏損耗(Leakage Loss) 2.4.3. 彎曲損耗(Bending Loss) 2.4.4. 散射損耗(Scattering Loss) 2.5. 分波多工(WDM) 2.5.1. 雙向用戶系統(Bidirectional Subscriber System) 2.5.2. 粗分波多工(Coarse Wavelength Division Multiplexing, CWDM) 2.5.3. 密分波多工(Dense Wavelength Division Multiplexing, DWDM) 2.5.4. 多工/解多工器參數定義 2.6. 空間域光學同調斷層掃描(SD-OCT) 第3章 AWG理論與設計 3.1. 概述 3.2. 原理 3.2.1. 色散關係與通道間距 3.2.2. 自由頻譜範圍(Free Spectral Range, FSR) 3.2.3. 以多模干涉儀(MMI)平坦化輸出頻譜 3.3. AWG設計與模擬 3.3.1. 設計與模擬方法概述 3.3.2. 正確性驗證 3.3.3. AWG設計 第4章 Echelle Grating理論與設計 4.1. Echelle Grating介紹與原理 4.1.1. 概述 4.1.2. 原理 4.2. Echelle Grating設計與模擬 4.2.1. 設計與模擬方法概述 4.2.2. 正確性驗證 4.2.3. Echelle Grating設計 第5章 製程技術探討及量測分析 5.1. 概述 5.2. 機台簡介 5.2.1. 微影設備 5.2.2. 蝕刻設備 5.2.3. 薄膜沉積設備 5.3. 矽光子元件製程 5.4. 製程總結 5.5. 量測結果與分析 5.5.1. 量測架構 5.5.2. 量測結果 第6章 結論與未來展望 6.1. 結論 6.2. 未來展望 參考文獻 常用英文名詞縮寫對照表

    [1] Z. Fang and C. Zhao, "Recent Progress in Silicon Photonics: A Review", ISRN Optics, vol. 2012, pp. 1-27, 2012.
    [2] Akca, L. Chang, G. Sengo, K. Worhoff, R. de Ridder and M. Pollnau, "Polarization-independent Enhanced-resolution Arrayed-waveguide Grating used in Spectral-domain Optical Low-coherence Reflectometry", IEEE Photonics Technology Letters, pp. 848-850, 2012.
    [3] S. Selvaraja and P. Sethi, "Review on Optical Waveguides", Emerging Waveguide Technology, 2018.
    [4] R. Soref, J. Schmidtchen and K. Petermann, " Large Single-Mode Rib Waveguides in GeSi-Si and Si-on-SiO2", IEEE Journal of Quantum Electronics, vol. 27, no. 8, pp. 1971-1974, 1991.
    [5] Seong Phun Chan, Ching Eng Png, Soon Thor Lim, G. Reed and V. Passaro, "Single-mode and polarization-independent silicon-on-insulator waveguides with small cross section", Journal of Lightwave Technology, vol. 23, no. 6, pp. 2103-2111, 2005.
    [6] T. Aalto, Microphotonic silicon waveguide components: VTT Technical Research Centre of Finland, 2004.
    [7] Emis Data Review Series no. 4 (1988) Properties of Silicon, INSPEC (IEE), London, pp. 72–79.
    [8] T. S. Moss, G. J. Burell and B. Ellis (1973) Semiconductor Opto-electronics, Butterworth, London.
    [9] R. Soref and J. Larenzo, "All-silicon active and passive guided-wave components for λ = 1.3 and 1.6 µm", IEEE Journal of Quantum Electronics, vol. 22, no. 6, pp. 873-879, 1986.
    [10] P. Dumon et al., "Low-Loss SOI Photonic Wires and Ring Resonators Fabricated With Deep UV Lithography", IEEE Photonics Technology Letters, vol. 16, no. 5, pp. 1328-1330, 2004.
    [11] Y. Hibino, "Recent advances in high-density and large-scale AWG multi/demultiplexers with higher index-contrast silica-based PLCs", IEEE Journal of Selected Topics in Quantum Electronics, vol. 8, no. 6, pp. 1090-1101, 2002.
    [12] A. Sakai, G. Hara and T. Baba, "Propagation Characteristics of Ultrahigh-Δ Optical Waveguide on Silicon-on-Insulator Substrate", Japanese Journal of Applied Physics, vol. 40, no. 2, 4, pp. L383-L385, 2001.
    [13] Y. Vlasov and S. McNab, "Losses in single-mode silicon-on-insulator strip waveguides and bends", Optics Express, vol. 12, no. 8, p. 1622, 2004.
    [14] V. Subramaniam, G. De Brabander, D. Naghski and J. Boyd, "Measurement of mode field profiles and bending and transition losses in curved optical channel waveguides", Journal of Lightwave Technology, vol. 15, no. 6, pp. 990-997, 1997.
    [15] K. K. Lee, D. R. Lim, H.C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: experiments and model,” Applied Physics Letters, Vol. 77, No. 11, pp. 1617-1619, 2000.
    [16] D. Marcuse, “Mode conversion caused by surface imperfections of a dielectric slab waveguide,” Bell System Technical Journal, Vol. 48, No. 10, pp. 3187-3215, 1969.
    [17] F. Payne and J. Lacey, "A theoretical analysis of scattering loss from planar optical waveguides", Optical and Quantum Electronics, vol. 26, no. 10, pp. 977-986, 1994.
    [18] F. Grillot, L. Vivien, S. Laval, D. Pascal, and E. Cassan, "Size influence on the propagation loss induced by sidewall roughness in ultrasmall SOI waveguides," IEEE Photonics Technology Letters, Vol. 16, pp. 1661-1663, 2004.
    [19] S. Robinson, S. Jasmine and R. Pavithra, “Investigation on hybrid WDM (DWDM+CWDM) free space optical communication system,” ICTACT Journal on Communication Technology, vol. 06, no. 04, pp. 1187-1192, 1998.
    [20] H. Takahashi, "Wavelength multiplexer/demultiplexer (MUX/DEMUX in WDM)," in Encyclopedic handbook of integrated optics, Boca Raton, Taylor & Francis Group, 2006, pp. 483-486.
    [21] International Telecommunication Union, "ITU-T G.671, Series G: Transmission systems and media, digital systems and networks, Transmission characteristics of optical components and subsystems," ITU, 2012.
    [22] S. V. Kartalopoulos, “Introduction to DWDM Technology,” Murray Hill: John Wiley & Sons Inc., 2000.
    [23] A. Fercher, C. Hitzenberger, G. Kamp and S. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry", Optics Communications, vol. 117, no. 1-2, pp. 43-48, 1995.
    [24] B. Bouma, S. Yun, B. Vakoc, M. Suter and G. Tearney, "Fourier-domain optical coherence tomography: recent advances toward clinical utility", Current Opinion in Biotechnology, vol. 20, no. 1, pp. 111-118, 2009.
    [25] W. Drexler and J. Fujimoto, Optical Coherence Tomography. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2008.
    [26] G. Häusler, "“Coherence Radar” and “Spectral Radar”—New Tools for Dermatological Diagnosis", Journal of Biomedical Optics, vol. 3, no. 1, p. 21, 1998.
    [27] V. Nguyen et al., "Spectral domain optical coherence tomography imaging with an integrated optics spectrometer", Optics Letters, vol. 36, no. 7, p. 1293, 2011.
    [28] M. Smit and C. Van Dam, "PHASAR-based WDM-devices: Principles, design and applications", IEEE Journal of Selected Topics in Quantum Electronics, vol. 2, no. 2, pp. 236-250, 1996.
    [29] P. Bernasconi, C. Doerr, C. Dragone, M. Cappuzzo, E. Laskowski and A. Paunescu, "Large N x N waveguide grating routers", Journal of Lightwave Technology, vol. 18, no. 7, pp. 985-991, 2000.
    [30] M. Smit, "New focusing and dispersive planar component based on an optical phased array", Electronics Letters, vol. 24, no. 7, p. 385, 1988.
    [31] H. Takahashi, S. Suzuki, K. Kato and I. Nishi, "Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometre resolution", Electronics Letters, vol. 26, no. 2, p. 87, 1990.
    [32] R. Adar, C. Henry, C. Dragone, R. Kistler, and M. Milbrodt, “Broad-band array multiplexers made with silica waveguides on silicon,” J. Lightw. Technol., vol. 11, no. 2, pp. 212–219, Feb. 1993.
    [33] H. Bissessur et al., “16 channel phased array wavelength demultiplexer on InP with low polarization sensitivity,” Electron. Lett., vol. 30, no. 4, pp. 336–337, Feb. 1994.
    [34] A. Malik et al., “Germanium-on-silicon mid-infrared arrayed waveguide grating multiplexers,” IEEE Photon. Technol. Lett., vol. 25, no. 18, pp. 1805–1808, Sep. 2013.
    [35] S. Cheung, Tiehui Su, K. Okamoto and S. Yoo, "Ultra-Compact Silicon Photonic 512 × 512 25 GHz Arrayed Waveguide Grating Router", IEEE Journal of Selected Topics in Quantum Electronics, vol. 20, no. 4, pp. 310-316, 2014.
    [36] G. Reed and A. Knights, Silicon photonics. Chichester: John Wiley, 2004.
    [37] E Hecht (1998) Optics, 3rd edn, Addison-Wesley, London, ch. 10.
    [38] Y. Hibino, "Recent advances in high-density and large-scale AWG multi/demultiplexers with higher index-contrast silica-based PLCs", IEEE Journal of Selected Topics in Quantum Electronics, vol. 8, no. 6, pp. 1090-1101, 2002.
    [39] H. Talahashi, K. Oda, H. Toba and Y. Inoue, "Transmission characteristics of arrayed waveguide N×N wavelength multiplexer", Journal of Lightwave Technology, vol. 13, no. 3, pp. 447-455, 1995.
    [40] S. Pathak, P. Dumon, D. Van Thourhout and W. Bogaerts, "Comparison of AWGs and Echelle Gratings for Wavelength Division Multiplexing on Silicon-on-Insulator", IEEE Photonics Journal, vol. 6, no. 5, pp. 1-9, 2014. Available: 10.1109/jphot.2014.2361658.
    [41] L. B. Soldano and E. C. M. Pennings, "Optical Multi-Mode INterference Devices Based on Self-Imaging: Principles and Applications," Journal of Lightwave Technology, vol. 13, no. 4, pp. 615-627, 1995.
    [42] J. B. D. Soole, M. R. Amersfoort, H. P. LeBlanc, N. C. Andreadakis, A. Rajhel, C. Caneau, R. Bhat, M. A. Koza, C. Youtsey, I. Adesida, “Use of Multimode Interference Coupler to Broaden The Passband of Wavelength-Dispersive Intergrated WDM Filters,” IEEE Photonics Technology Letters, vol. 8, no. 10, pp. 1340-1342, 1996.
    [43] K. Sasaki, F. Ohno, A. Motegi and T. Baba, "Arrayed waveguide grating of 70×60 µm2 size based on Si photonic wire waveguides", Electronics Letters, vol. 41, no. 14, p. 801, 2005.
    [44] S. Pathak, M. Vanslembrouck, P. Dumon, D. V. Thourhout and W. Bogaerts, "Optimized Silicon AWG with Flattened Spectral Response Using an MMI Aperture," Journal of Lightwave Technology, vol. 31, no. 1, pp. 87-93, 2013.
    [45] J. Brouckaert , W. Bogaerts, P. Dumon, D. V. Thourhout and R. Baets, "Planar concave grating demultiplexer fabricated on a nanophotonic silcon-on-insulator platform," Journal of Lightwave Technology, vol. 25, no. 5, pp. 1269-1275, 2007.
    [46] C. J. Overbeck, R. R. Plamer, R. J. Stephenson and M. W. White, The concave grating spectrometer-Rowland mounting, USA: Central Scientific Company, 1941, pp. 1-4.
    [47] J. James, Spectograph design fundamentals, New York: Cambridge University Press, 2007, p. 89.
    [48] E. F. Schibert, Light-emitting diodes, 2nd ed., New York: Cambridge University Press, 2006.
    [49] J. m. Liu, Photonic Devices, New York: Cambridge University Press, 2005.
    [50] J. Brouckaert, W. Bogaerts, P. Dumon, D. Van Thourhout and R. Baets, "Planar Concave Grating Demultiplexer Fabricated on a Nanophotonic Silicon-on-Insulator Platform", Journal of Lightwave Technology, vol. 25, no. 5, pp. 1269-1275, 2007.
    [51] J. Brouckaert, W. Bogaerts, S. Selvaraja, P. Dumon, R. Baets and D. Van Thourhout, "Planar Concave Grating Demultiplexer With High Reflective Bragg Reflector Facets", IEEE Photonics Technology Letters, vol. 20, no. 4, pp. 309-311, 2008.
    [52] C. Mogab, "The Loading Effect in Plasma Etching", Journal of The Electrochemical Society, vol. 124, no. 8, p. 1262, 1977.
    [53] P. Wang, A. Michael and C. Kwok, "Fabrication of Sub-micro Silicon Waveguide with Vertical Sidewall and Reduced Roughness for Low Loss Applications", Procedia Engineering, vol. 87, pp. 979-982, 2014.
    [54] V. Almeida, R. Panepucci and M. Lipson, "Nanotaper for compact mode conversion", Optics Letters, vol. 28, no. 15, p. 1302, 2003.

    無法下載圖示 全文公開日期 2024/08/19 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE