簡易檢索 / 詳目顯示

研究生: 陳玟豪
Wen-Hao Chen
論文名稱: 利用二茂鐵修飾電極製備高靈敏度微電極陣列穀氨酸感測器
Fabrication of Sensitive Glutamate Microelectrode Array Sensors by Modifying Electrodes with Ferrocene
指導教授: 曾婷芝
Tina T.-C. Tseng
口試委員: 陳建宏
Edward Chen
江志強
Jyh-Chiang Jiang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 100
中文關鍵詞: 二茂鐵穀氨酸穀氨酸氧化酵素生物感測器二茂鐵修飾感測器
外文關鍵詞: ferrocene, glutamate, glutamte oxidase, biosensor, modifying Electrodes with Ferrocene
相關次數: 點閱:293下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究利用半導體製程製備植入型微電極陣列探針,製程主要可分成三個階段,第一階段為微電極陣列金屬圖層之形成,利用微影製程技術及電子蒸鍍,將金屬鉑鍍在矽基材上。第二階段為微電極陣列探針表層的絕緣,此階段將探針沉積絕緣層除了電極端及封裝端以外,使用電漿輔助化學氣相沉積將其表面覆蓋介電層作絕緣,並將電極端與封裝端進行局部蝕刻以便後續研究。第三階段為微電極陣列探針邊界輪廓定義,利用微影製程定義出探針邊界輪廓,進行深蝕刻將探針從晶圓中取下。
取下微電極陣列探針後將進行其表面修飾,分別製備兩種感測器,第一種為以二茂鐵修飾電極製備穀氨酸感測器,將微電極陣列探針先沉積抗干擾層聚咯薄膜與全氟磺酸薄膜,在顯微鏡下以人工徒手塗佈將穀氨酸氧化酵素(利用戊二醛交聯劑和牛血清蛋白穩定劑與穀氨酸氧化酵素進行交聯)固定在電極表面,最後將與牛血清蛋白交聯二茂鐵(利用1-(3-二甲氨基丙基)-3-乙基碳二亞胺鹽酸鹽及N-羥基琥珀醯亞胺兩交聯劑混合二茂鐵和牛血清蛋白進行交聯)以物理吸附的方式固定於穀氨酸感測器上。第二種為以二茂鐵修飾電極製備過氧化氫感測器,將微電極陣列探針先沉積抗干擾層聚咯薄膜與全氟磺酸薄膜,最後將牛血清蛋白交聯二茂鐵以物理吸附方式固定於過氧化氫感測器上,其中,在製備過氧化氫感測器時毋須固定酵素,因為過氧化氫為電中性分子藉由擴散作用會穿越抗干擾層至白金電極表面,被氧化放出電子。
以二茂鐵所修飾的穀氨酸感測器,其線性範圍為20-539µM,響應時間約3秒,感測極限為1.35 µM (N = 30),靈敏度為121 nA/µM·cm2(N = 3),相較於未以二茂鐵所修飾的穀氨酸感測器,其靈敏度增加了1.51倍,儲存穩定性為123%(存放28天後其靈敏度與其初始靈敏度比值之百分比)。另外,以二茂鐵修飾電極製備過氧化氫感測器,其響應時間約2秒,靈敏度為269.0 nA/µM·cm2(N = 3),相較於未以二茂鐵所修飾的過氧化氫感測器,其靈敏度增加了3.73倍。
本研究結合二茂鐵所修飾的穀氨酸感測器微電極陣列探針,以及未使用二茂鐵修飾的穀氨酸感測器微電極陣列探針,將此二種穀氨酸感測器探針同時植入白鼠大腦視丘中,分別刺激白鼠左肢、右肢,以偵測由痛覺刺激所產生的穀氨酸釋放,也探討以二茂鐵修飾之穀氨酸感測器用於活體實驗之效果,實驗結果發現動物體內神經傳導途徑為對側控制系統,另外有修飾二茂鐵的穀氨酸微電極陣列探針相較於未使用二茂鐵修飾的穀氨酸感測器微電極陣列探針,在動物實驗裡並沒有成功的放大穀氨酸訊號,其可能原因為血液中的血紅素與感測器上的二茂鐵結合造成感測器表面阻塞進而導致靈敏度下降。


In this research, the semiconductor manufacturing technology was used to fabricate implantable microelectrode array (MEA) probe. The manufacturing process can be divided into three parts. The first part is the formation of the metal layer on probes that defined electrode sites, connections, and bonding pads. The photolithography technology and metal deposition technology by electron beam evaporator were used to transfer the metal pattern on the silicon substrate. The second part is passivation process of the probe surface. The wafer surface were deposited with dielectric layers (SiO2 and Si3N4) by plasma enhanced chemical vapor deposition (PECVD). Then, the electrode sites and the bonding pads defined by the second photolithography process were etched to expose their metal surfaces. The third part is the definition of the probe outline. The third photolithography process was used to define the pattern of probe outline and then, the etching process was used to etch the outline to the bottom of the substrate in order to make the probes releasable from the wafer.
After the probes were released from the wafer, the electrode surface would be modified for fabricating glutamate sensors. In this research, there were two kinds of sensor would be prepared. The first one was the ferrocene modified microelectrode array glutamate sensor. First, permselective polymer layers (polypyrrole and Nafion®) for blocking interferents were deposited. Then, glutamate oxidase was immobilized on the electrode manually by crosslinking using the stabilizing reagent bovine serum albumin (BSA) and the crosslinker glutaraldehyde (GAH). Ferrocene conjugated BSA were prepared by using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and N-hydroxysuccinimide (NHS) crosslinkers mixed with ferrocene solution and BSA solution. Finally, the Fc-BSA was adsorbed on the sensor by immersing the sensor into the solution of ferrocene conjugate. The other sensor that we fabricated was the ferrocene modified microelectrode array hydrogen peroxide sensor. Similarly, the permselective polymer layers (polypyrrole and Nafion®) for blocking interferents were deposited. Finally, the Fc-BSA was adsorbed on the sensor by immersing the sensor into the solution of ferrocene conjugate. When fabricating the hydrogen peroxide sensor, no enzyme was required because of hydrogen peroxide was a electrical neutrality of molecule which could diffuse into electrode surface, It’s was be oxidased.
The glutamate sensors were modified by ferrocene have a larger linear detection range (20–539 μM), higher sensitivity 121 nA/µM·cm2(N = 3), it also have faster response time (<3 s), and lower detection limit (1.35 μM). The long-term stability of ferrocene modification glutamate sensor has been investigated by testing sensor sensitivities every two week for 28 days (sensors was stored in a desiccated box at -20°C). The ferrocene modification sensor retains 123 % of its original activity. Additionally, The hydrogen peroxide sensors were modified by ferrocene have higher sensitivity 269.0 nA/µM·cm2(N = 3), After modification the hydrogen peroxide sensor have 3.73 times sensitivity higher than the unmodified hydrogen peroxide sensor. It also have faster response time (<2 s).
In this research, the ferrocene modified microelectrode array glutamate sensors and the unmodified glutamate sensors were combined and implanted into the thalamus of rats together. The evoked glutamate release by noxious stimulation on the right leg and the left leg of rats were monitored. The performance of the ferrocene modified microelectrode array glutamate sensors applied in rats was evaluated. The results showed that the in vivo study confirmed that the ascending pathway of spinothalamic tract was contralateral. Additionally, the ferrocene modified microelectrode array glutamate sensors didn’t show the higher sensitivity in the animal test comparing with the unmodified glutamate sensors. The reasons were lacking of ferrocene in vivo and hemosiderin were attracted the iron in ferrocene. That were the reasons why ferrocene couldn’t work in animal test.

研究動機 I 中文摘要 II ABSTRACT IV 致謝 VII 目錄 VIII 圖目錄 XI 表目錄 XV 第一章、緒論 1 1.1、生物感測器簡介 1 1.2、穀氨酸感測器的簡介 2 1.2.1、穀氨酸簡介 2 1.2.2、電化學式穀氨酸感測器文獻回顧 3 1.2.3、穀氨酸感測器在各領域的應用 5 1.3、二茂鐵文獻回顧 5 1.4、微電極陣列介紹與其在生物感測器之應用 9 第二章、微電極陣列製程 11 2.1、金屬圖層之形成 11 2.1.1、爐管熱氧化表面絕緣 11 2.1.2、第一道微影製程 13 2.1.3、金屬層沉積 15 2.2、探針表面絕緣 17 2.2.1、介電層沉積 18 2.2.2、第二道微影製程 20 2.2.3、電極端與封裝端蝕刻 20 2.3、定義探針邊界輪廓 21 2.3.1、第三道微影製程 22 2.3.2、探針邊界輪廓蝕刻 23 第三章、二茂鐵修飾固定酵素之微電極 27 3.1、實驗設備 27 3.2、實驗藥品與耗材 29 3.3、二茂鐵的特性與簡介 30 3.4、實驗方法 31 3.4.1、微電極探針封裝 33 3.4.2、藥品配製 34 3.4.3、電極表面抗干擾層修飾 36 3.4.4、酵素固定方法 37 3.4.5、二茂鐵修飾電極 37 3.4.6、分析測量方法 39 3.4.7、動物實驗 40 第四章、結果與討論 43 4.1、二茂鐵電極的製備 43 4.1.1、循環伏安觀察二茂鐵電極的製備 43 4.1.2、以掃描式電子顯微鏡觀察二茂鐵修飾電極之結果檢視 43 4.2、二茂鐵修飾電極製備高靈敏度穀氨酸感測器及過氧化氫感測器 48 4.2.1、測量電位的選擇 48 4.2.1(a)、二茂鐵修飾過氧化氫感測器之測量電位的選擇 48 4.2.1(b)、二茂鐵修飾穀氨酸感測器之測量電位的選擇 49 4.2.2、二茂鐵修飾感測器穩定性測試 50 4.2.2(a)、二茂鐵修飾感測器短期穩定度測試 51 4.2.2(b)、二茂鐵修飾穀氨酸感測器儲存穩定度測試 56 4.2.3、二茂鐵修飾感測器干擾物測試 57 4.2.3(a)、二茂鐵修飾過氧化氫感測器干擾物測試 57 4.2.3(b)、二茂鐵修飾穀氨酸感測器干擾物測試 59 4.3、將二茂鐵修飾電極製備高靈敏度微陣列穀氨酸感測器植入白鼠進行動物實驗之測試結果(本章節之動物實驗的操作由台北醫學大學神經外科張成富醫師進行) 61 4.3.1、背對背電極之製備 62 4.3.2、動物實驗前後穀氨酸感測器靈敏度一致性 62 4.3.3、刺激白鼠左肢與右肢對於大腦右視丘穀氨酸感測電流變化之影響比較 64 4.3.4、比較二茂鐵修飾穀氨酸電極與穀氨酸電極在動物實驗之結果 67 結論 68 參考文獻 69 附錄 73 附錄A:實驗須注意細節 73 附錄B:微影製程注意事項 74 附錄C:白金線電極製作 74 附錄D:微電極封裝流程 75 附錄E:穀氨酸酵素250 unit/mL配置方法 75 附錄F:二茂鐵配置方法及注意事項 76 附錄G:利用銀線製備參考電極(Ag/AgCl)的方法 77 附錄H:動物實驗測量需注意事項 78 附錄I:微電極陣列探針製備流程表 78

1. Horne, C.G. van, Clinical Considerations for Rapid Electrochemical Detection of Glutamate During Intra-operative and Long-term Monitoring, in Proceedings of the 25th Annual International Conference of the IEEE EMBS2003: Cancun, Mexico. p. 3704-3706.
2. Thévenot, D.R.; Toth, K.; Durst, R.A.; and Wilson, G.S., Electrochemical biosensors: recommended definitions and classification1. Biosensors and Bioelectronics, 2001. 16(1–2): p. 121-131.
3. Govindarajan, S.; McNeil, C.J.; Lowry, J.P.; McMahon, C.P.; and Neill, R.D. O', Highly selective and stable microdisc biosensors for L-glutamate monitoring. Sensors and Actuators B: Chemical, 2013. 178: p. 606-614.
4. Smith, Y., Glutamatergic pathways their relevance for psychiatric diseases, in Dopamine and Glutamate in Psychiatric Disorders, Schmidt, W.J. and Reith, M.E.A., Editors. 2005, Humana Press: NJ, USA. p. 63-78.
5. David, A.B. and Peter, W.K., Methods, Applications and Perspectives, in Handbook of Microdialysis, Westerink, B.H. and Cremers, T.I.F.H., Editors. 2007, Elsevier: Burlington. p. 33-46.
6. Burmeister, J.J.; Pomerleau, F.; Palmer, M.; Day, B.K.; Huettl, P.; and Gerhardt, G.A., Improved ceramic-based multisite microelectrode for rapid measurements of l-glutamate in the CNS. Journal of Neuroscience Methods, 2002. 119(2): p. 163-171.
7. Cosnier, S.; Innocent, C.; Allien, L.; Poitry, S.; and Tsacopoulos, M., An Electrochemical Method for Making Enzyme Microsensors. Application to the Detection of Dopamine and Glutamate. Anal. Chem., 1997. 69: p. 968-971.
8. Tseng, T.T.C.; Yao, J.; and Chan, W.C., Selective enzyme immobilization on arrayed microelectrodes for the application of sensing neurotransmitters. Biochemical Engineering Journal, 2013. 78: p. 146-153.
9. Pomerleau, F.; Day, B.K.; Huettl, P.; Burmeister, J.J.; and Gerhardt, G.A., Real time in vivo measures of L-glutamate in the rat central nervous system using ceramic-based multisite microelectrode arrays. Ann N Y Acad Sci, 2003. 1003: p. 454-7.
10. Burmeister, J.J.; Davis, V.A.; Quintero, J.E.; Pomerleau, F.; Huettl, P.; and Gerhardt, G.A., Glutaraldehyde Cross-Linked Glutamate Oxidase Coated Microelectrode Arrays: Selectivity and Resting Levels of Glutamate in the CNS. ACS Chem Neurosci, 2013: p. 721-728.
11. Hu, Y. and Wilson, G.S., Rapid changes in local extracellular rat brain glucose observed with an in vivo glucose sensor. J. Neurochem., 1997. 68: p. 1745-1752.
12. Burmeister, J.J. and Gerhardt, G.A., Self-Referencing Ceramic-Based Multisite Microelectrodes for the Detection and Elimination of Interferences from the Measurement of L-Glutamate and Other Analytes. Anal. Chem., 2001. 73: p. 1037-1042.
13. Qin, S.; Zeyden, M.van der; Oldenziel, W.H.; Cremers, T.I.F.H.; and Westerink, B.H.C., Microsensors for in vivo Measurement of Glutamate in Brain Tissue. sensors, 2008. 8: p. 6860-6884.
14. Weltin, A.; Kieninger, J.; Enderle, B.; Gellner, A.K.; Fritsch, B.; and Urban, G.A., Polymer-based, flexible glutamate and lactate microsensors for in vivo applications. Biosensors and Bioelectronics, 2014. 61: p. 192-199.
15. Wei, W.; Song, Y.; Wang, L.; Zhang, S.; Luo, J.; Xu, S.; and Cai, X., An implantable microelectrode array for simultaneous L-glutamate and electrophysiological recordings in vivo. Microsystems &Nanoengineering 2015. 2015(1): p. 1-6.
16. Burmeister, J.J.; Pomerleau, F.; Palmer, M.; Day, B.K.; Huettl, P.; and Gerhardt, G.A., Improved ceramic-based multisite microelectrode for rapid measurements of L-glutamate in the CNS. Neuroscience Methods, 2002. 119: p. 163-171.
17. Tseng, T.T.C. and Monbouquette, H.G., Implantable microprobe with arrayed microsensors for combined amperometric monitoring of the neurotransmitters, glutamate and dopamine. Electroanalytical Chemistry, 2012. 682: p. 141-146.
18. Tseng, T.T.C.; Chang, C.F.; and Chan, W.C., Fabrication of Implantable, Enzyme-Immobilized Glutamate Sensors for the Monitoring of Glutamate Concentration Changes in Vitro and in Vivo. Molecules, 2014. 19: p. 7341-7355.
19. Basu, A.K.; Chattopadhyay, P.; Roychudhuri, U.; and Chakraborty, R., A biosensor based on co-immobilized L-glutamate oxidase and L-glutamate dehydrogenase for analysis of monosodium glutamate in food. Biosensors and Bioelectronics, 2006. 21: p. 1968-1972.
20. enel, M. S¸, Construction of reagentless glucose biosensor based on ferrocene conjugated polypyrrole. Synthetic Metals, 2011. 161: p. 1861-1868.
21. Dong, S.; Wang, B.; and Liu, B., Amperometric glucose sensor with ferrocene as an electron transfer mediator. Biosensors & Bioelectmnics, 1991. 7: p. 215-222.
22. Qiu, J.D.; Zhou, W.M.; Guo, J.; Wang, R.; and Liang, R.P., Amperometric sensor based on ferrocene-modified multiwalled carbon nanotube nanocomposites as electron mediator for the determination of glucose. Analytical Biochemistry, 2009. 385: p. 264-269.
23. Tripathi, V.S.; Kandimalla, V.B.; and Ju, H., Amperometric biosensor for hydrogen peroxide based on ferrocene-bovine serum albumin and multiwall carbon nanotube modified ormosil composite. Biosensors and Bioelectronics, 2006. 21: p. 1529-1535.
24. Yabuki, S.; Mizutani, F.; and Hirata, Y., Preparation of a microperoxidase and ferrocene-immobilized polyion complex membrane for the detection of hydrogen peroxide. Electroanalytical Chemistry, 1999. 468: p. 117-120.
25. Qiu, J.D.; Guo, J.; Liang, R.P.; and Xiong, M., A Nanocomposite Chitosan Based on Ferrocene-Modified Silica Nanoparticles and Carbon Nanotubes for Biosensor Application. Electroanalysis, 2007. 19(22): p. 2335-2341.
26. BOTRE, F.; BOTRE, C.; LORENTI, G.; MAZZEI, F.; PORCELLI, F.; and SCIBONA, G., Determination of L-glutamate and L-glutamine in pharmaceutical formulations by amperometric L-glutamate oxidase based enzyme sensors. Pharmaceutical & Biomedical Analysis, 1993. 11: p. 679-686.
27. Senel, M.; evik, E.C¸; and Abasıyanık, M.F., Amperometric hydrogen peroxide biosensor based on covalent immobilization of horseradish peroxidase on ferrocene containing polymeric mediator. Sensors and Actuators B: Chemical, 2010. 145: p. 444-450.
28. Xiao, H. 著. 羅正忠, 張鼎張 譯. (2002) 半導體製程技術導論 (Introduction to Semiconductor Manufacturing Technology), 台北, 台灣培生教育出版: 學銘圖書發行.

QR CODE