簡易檢索 / 詳目顯示

研究生: 林皓瑜
Hao-Yu Lin
論文名稱: 利用微電漿系統製備奈米銅氧化物 應用於生物感測器
Fabrication of Oxides of Copper Nanoparticles by Microplasma for the Applications in Biosensor
指導教授: 王孟菊
Meng-Jiy Wang
口試委員: 陳克紹
Ko-Shao Chen
楊佩芬
Pei-Fen yang
李振綱
Cheng-Kang Lee
何郡軒
Jinn-Hsuan Ho
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 110
中文關鍵詞: 微電漿銅氧化物葡萄糖感測生物感測電化學感測器
外文關鍵詞: microplasma, copper oxide, hydrogen peroxide sensing, glucose sensing, biological sensing
相關次數: 點閱:438下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

近年來罹患糖尿病越來越多,人類開始重視自我檢測與控制血糖,為了製備出高靈敏度非酵素型葡萄糖感測器,本研究將具有催化葡萄糖的能力CuxOy NPs修飾金電極表面,以建立快速、高精確度與高選擇性之感測器。由於奈米銅氧化物奈米粒子 (CuxOy NPs) 具有高導電性、光電性能、相對穩定和抗菌活性等特性,已廣泛應用於許多領域。一般常見製備CuxOy NPs方法為液相法,藉由還原劑以及分散劑將前驅溶液合成奈米粒子,除了需透過加熱或長時間製備,且使用的藥品對於環境有害,而擁有高能量的電漿具有簡單、快速製備奈米粒子的潛力,且不須加入還原劑及分散劑即可製備奈米粒子。
因此,本研究主要分成三部分,第一部分為利用氯化鈉作為電解質以使電漿穩定產生,可得氯化鈉為最適化濃度25 mM。第二部分為加入不同濃度抗壞血酸濃度控制CuxOy NPs大小及晶格形狀,當未加入抗壞血酸時,可得直徑為170 nm之氧化銅奈米片 (CuO);當加入抗壞血酸於溶液中,可得70 nm之氧化亞銅 (Cu2O)立方體,並將兩種粒子修飾於可拋棄式金電極進行電化學感測。
第三部分為感測雙氧水與葡萄糖,將不同濃度奈米CuO或Cu2O修飾於可拋棄式金電極 (AuE) 工作表面,在-0.3 V施加電位對雙氧水進行感測時,可發現修飾5 mg/ml CuO或Cu2O NPs於AuE可得最大之電流響應,為最適化濃度。同時,CuO/AuE與Cu2O/AuE於雙氧水濃度範圍於0.1 mM 至10 mM,可感測到較高靈敏度,分別為1470 μA mM-1 cm-2與857 μA mM-1 cm-2。此外,以最適化修飾濃度CuxOy/AuE感測葡萄糖,在0.5 V為施加電位,以5 mg/ml CuO修飾感測葡萄糖效果最佳,於工作環境0.1 M NaOH下靈敏度可達到3.5 mA mM-1 cm-2 (0.1 M KCl)。最後,為了避免血液中的電活性物質 (如抗壞血酸、尿酸等) 干擾電極與葡萄糖,所用市售的Nafion膜作為抗干擾層,修飾於最適化CuxOy/AuE並進行抗干擾測試。在未修飾抗干擾層,電極會與電活性物質產生電流響應而產生干擾,而修飾濃度0.5 % Nafion膜時,電活性物質無法干擾且只觀察到葡萄糖之電流響應,當修飾濃度1% Nafion膜時,則會使電流響應下降。因此以0.5% Nafion膜為最適化抗干擾層濃度。


In recent years, a lot of people have suffered from diabetes disease. Humans have been attention to control of blood sugar by themselves in a variety of means, including using a glucose sensor. In order to prepare a non-enzymatic glucose sensor with high sensitivity, this study used CuxOy nanoparticles as an active electrocatalyst due to its high conductivity, photoelectric properties, relative stability, and also antibacterial activity. Further, the synthesized CuxOy nanoparticles were immobilized on the surface of gold electrodes (AuEs) to establish rapid, accurate, and high selectivity glucose sensor. The common method for preparing CuxOy nanoparticles is a liquid phase method, in which the nanoparticles are synthesized by using a reducing agent, capping agent, and/or surfactant. In addition, the preparation of nanoparticles by this method is time consuming and the used chemical agents are also harmful to the environment. Therefore, microplasma has recently emerged as an attractive and method to synthesize various metal and metal oxide nanoparticles. This method has also the potential to prepare various nanoparticles in a one-step and short time without adding either reducing or capping agents, and also surfactants.
This thesis is comprised of three parts: the first parts focused on the optimization of the concentrations of NaCl for generating stable microplasma system by oscilloscope. The second part was to fabricate copper oxides nanoparticles (CuxOy-NPs) with different concentrations of ascorbic acid (AA) in a 25 mM of NaCl solution. The physical and chemical characteristics of the as-prepared CuxOy-NPs were examined by field-emission scanning electron microscope (SEM), X-ray diffraction (XRD), and UV-Vis spectroscopy. Meanwhile, the third parts were divided into three sections: (i) detection of hydrogen peroxide (H2O2) by modifying different concentrations of CuxOy-NPs on disposable gold electrode (AuE) and (ii) optimization of the concentration of CuxOy-NPs decorated on the AuE. The results showed that an optimized concentration of 5 mg/ml CuO/AuE or Cu2O/AuE to detect H2O2 in 0.1 M PBS (pH=7.4) at -0.3 V vs. Ag/AgCl gave the linear detection range from 0.1 to 10 mM and highest sensitivities of 1470 μA mM-1 cm-2 and 857 μA mM-1 cm-2. And (iii) the nonenzymatic detection of glucose by the optimized concentration of CuxOy/AuE in 0.1 M NaOH (0.1 M KCl) at 0.5 V vs. Ag/AgCl. The results demonstrated that the best sensing platform for glucose detection was CuO/AuE. The linear concentration range of glucose detection was from 0.02 to 5 mM and 5 to 12 mM with the sensitivity values of 3.5 mA mM-1 cm-2 and 1.01 mA mM-1 cm-2. In this work, the fabricated CuxOy/AuE sensor was modified by different concentrations of Nafion to avoid interference from several electroactive species including AA and uric acid (UA) present in human blood toward glucose detection. The results showed that the current responses increased when adding AA and UA into 0.1 M NaOH (0.1 M KCl) without Nafion on CuxOy/AuE. However, the current responses did not show appreciable changes during the addition of AA and UA after 0.5% Nafion was casted on CuxOy/AuE. Therefore, 0.5% Nafion was selected as the optimized concentration for anti-interference studies to enhance the selectivity of CuxOy/Au sensing platform toward glucose.

中文摘要 I Abstract III 致謝 V 目錄 VII 圖目錄 IX 表目錄 XIII 第一章 緒論 1 1-1 前言 1 1-2 研究動機 2 第二章 文獻回顧 3 2-1生物感測器 3 2-1-1 生物感測器定義 3 2-1-2 生物感測器 (biosensors) 之基本結構與原理 3 2-1-3 電化學生物感測器 6 2-1-4 電化學葡萄糖生物感測器 9 2-1-5離子選擇膜 (ion permselective membrane) 11 2-2 奈米金屬氧化物材料 12 2-2-1 奈米材料介紹[36, 37] 12 2-2-2奈米銅氧化物 (oixdes of copper nanoparticles, CuxOy NPs) 之發展與應用 13 2-2-3常見奈米銅氧化物 (CuxOy NPs) 之製備 13 2-2-4常壓微電漿系統製備奈米金屬或金屬氧化物之方法 22 2-2-5奈米銅氧化物 (CuxOy NPs) 應用於之非酵素型葡萄糖感測器 28 第三章 實驗方法與儀器原理 30 3-1實驗設備 30 3-2 實驗藥品與溶液配製 31 3-2-1 實驗藥品 31 3-2-2 溶液配製 32 3-3 實驗方法 34 3-3-1 氯化鈉濃度對製備CuxOy粒子的最適化 34 3-3-2利用電化學式微電漿方式製備CuxOy奈米粒子 35 3-3-3製備雙氧水與非酵素型葡萄糖感測系統 37 3-4分析儀器與分析方法 39 3-4-1場發射電子顯微鏡分析 (field emission scanning electron microscopy, FE-SEM) 39 3-4-2 X光繞射分析 (X-ray diffraction, XRD) 39 3-4-3 紫外線/可見光分光光譜儀 (Uv-vis) 40 3-5電化學分析原理 41 3-5-1 電化學分析裝置 41 3-5-2 循環伏安法 (Cyclic Voltammetry, CV) 43 3-5-3 計時安培法 (Amperometric method) 44 第四章 結果與討論 45 4-1最適化氯化鈉濃度並製備奈米銅氧化物 (CuxOy NPs) 46 4-2最適化微電漿處理時間對製備奈米銅氧化物 (CuxOy-NPs) 49 4-2-1 不同電漿處理時間對奈米銅氧化物 (CuxOy-NPs) 表面形態之影響 49 4-2-2 不同電漿處理時間對CuxOy粒子晶體結構分析 51 4-2-3副產物雙氧水 (H2O2) 對奈米氧化銅 (CuO-NPs) 產量之影響 52 4-3 利用微電漿製備奈米氧化亞銅 (Cu2O NPs) 54 4-3-1抗壞血酸濃度對Cu2O粒子表面形態之影響 54 4-3-2 抗壞血酸濃度製備CuxOy粒子對晶體結構分析 55 4-3-3紫外光-可見光光譜分析CuxOy-NPs 57 4-4 以赤血鹽探討氧化銅(CuO)與氧化銅(Cu2O)修飾金電極(AuE)之電化學特性 58 4-4-1探討以不同掃描速率對金電極 (AuE)之電流響應 58 4-4-2修飾奈米銅氧化物 (CuxOy-NPs) 在金電極(AuE) 表面對電流值的影響 60 4-5氧化銅 (CuO) 與氧化亞銅 (Cu2O) 修飾於金電極應用於感測雙氧水 (H2O2) 64 4-5-1循環伏安法感測雙氧水 64 4-5-2以計時安培法測雙氧水 68 4-5-3 本研究與文獻感測器雙氧水之比較 71 4-6奈米銅氧化物 (CuxOy NPs)修飾於金電極應用於感測葡萄糖 73 4-6-1 循環伏安法感測葡萄糖 73 4-6-2 以計時安培法測葡萄糖 75 4-6-3本研究與文獻感測葡萄糖之比較 78 4-7 電活性物質抗干擾測試 79 第五章 結論與未來展望 81 5-1 結論 81 5-2 未來展望 82 第六章 參考文獻 83 附錄 91

[1] 許惠恒, “2017 年世界糖尿病聯盟大會,” 2017.
[2] N. H. C. Florencia Aguirre,Alex Brown, Gisela Dahlquist, 糖尿病教育諮詢委員會(DECS), Sheree Dodd, Trisha Dunning,Sir Michael Hirst, Christopher Hwang, Dianna Magliano, Chris Patterson, Courtney Scott, Jonathan Shaw, Gyula Soltész,Juliet, Usher-Smith, “國際糖尿病聯盟(IDF)糖尿病地圖,” International Diabetes Federation, 2013.
[3] D. Feng, F. Wang, and Z. Chen, “Electrochemical glucose sensor based on one-step construction of gold nanoparticle–chitosan composite film,” Sensors and Actuators B: Chemical, vol. 138, no. 2, pp. 539-544, 2009.
[4] M. Shichiri, Y. Yamasaki, K. Nao, M. Sekiya, and N. Ueda, “In vivo characteristics of needle-type glucose sensor--measurements of subcutaneous glucose concentrations in human volunteers,” Hormone and metabolic research. Supplement series, vol. 20, pp. 17-20, 1988.
[5] S. N. Sarangi, S. Nozaki, and S. N. Sahu, “ZnO nanorod-based non-enzymatic optical glucose biosensor,” Journal of biomedical nanotechnology, vol. 11, no. 6, pp. 988-996, 2015.
[6] S. Park, H. Boo, and T. D. Chung, “Electrochemical non-enzymatic glucose sensors,” Analytica chimica acta, vol. 556, no. 1, pp. 46-57, 2006.
[7] M. M. Rahman, A. Ahammad, J.-H. Jin, S. J. Ahn, and J.-J. Lee, “A comprehensive review of glucose biosensors based on nanostructured metal-oxides,” Sensors, vol. 10, no. 5, pp. 4855-4886, 2010.
[8] X. Chen, H. Pan, H. Liu, and M. Du, “Nonenzymatic glucose sensor based on flower-shaped Au@ Pd core–shell nanoparticles–ionic liquids composite film modified glassy carbon electrodes,” Electrochimica Acta, vol. 56, no. 2, pp. 636-643, 2010.
[9] A. A. Saei, J. E. N. Dolatabadi, P. Najafi-Marandi, A. Abhari, and M. de la Guardia, “Electrochemical biosensors for glucose based on metal nanoparticles,” TrAC Trends in Analytical Chemistry, vol. 42, pp. 216-227, 2013.
[10] D. R. Thevenot, K. Toth, R. A. Durst, and G. S. Wilson, “Electrochemical biosensors: recommended definitions and classification,” Pure and applied chemistry, vol. 71, no. 12, pp. 2333-2348, 1999.
[11] J. Castillo, S. Gáspár, S. Leth, M. Niculescu, A. Mortari, I. Bontidean, V. Soukharev, S. Dorneanu, A. Ryabov, and E. Csöregi, “Biosensors for life quality: Design, development and applications,” Sensors and Actuators B: Chemical, vol. 102, no. 2, pp. 179-194, 2004.
[12] D. Diamond, Principles of chemical and biological sensors: Wiley, 1998.
[13] P. N. Prasad, Introduction to biophotonics: John Wiley & Sons, 2004.
[14] 蘇宏基, “化學生物感測器講義,” 東華大學化學系.
[15] A. Chaubey, and B. Malhotra, “Mediated biosensors,” Biosensors and bioelectronics, vol. 17, no. 6-7, pp. 441-456, 2002.
[16] S. P. Mohanty, and E. Kougianos, “Biosensors: a tutorial review,” Ieee Potentials, vol. 25, no. 2, pp. 35-40, 2006.
[17] 謝振傑, “光纖生物感測器 ” 物理雙月刊;第廿八卷, 2006.
[18] U. E. Spichiger-Keller, Chemical sensors and biosensors for medical and biological applications: John Wiley & Sons, 2008.
[19] J. L. Hammond, N. Formisano, P. Estrela, S. Carrara, and J. Tkac, “Electrochemical biosensors and nanobiosensors,” Essays in biochemistry, vol. 60, no. 1, pp. 69-80, 2016.
[20] D. Grieshaber, R. MacKenzie, J. Voeroes, and E. Reimhult, “Electrochemical biosensors-sensor principles and architectures,” Sensors, vol. 8, no. 3, pp. 1400-1458, 2008.
[21] Z. Zhuang, X. Su, H. Yuan, Q. Sun, D. Xiao, and M. M. Choi, “An improved sensitivity non-enzymatic glucose sensor based on a CuO nanowire modified Cu electrode,” Analyst, vol. 133, no. 1, pp. 126-132, 2008.
[22] C. Xia, and W. Ning, “A novel non-enzymatic electrochemical glucose sensor modified with FeOOH nanowire,” Electrochemistry Communications, vol. 12, no. 11, pp. 1581-1584, 2010.
[23] G.-h. Wu, X.-h. Song, Y.-F. Wu, X.-m. Chen, F. Luo, and X. Chen, “Non-enzymatic electrochemical glucose sensor based on platinum nanoflowers supported on graphene oxide,” Talanta, vol. 105, pp. 379-385, 2013.
[24] G. Chang, H. Shu, K. Ji, M. Oyama, X. Liu, and Y. He, “Gold nanoparticles directly modified glassy carbon electrode for non-enzymatic detection of glucose,” Applied Surface Science, vol. 288, pp. 524-529, 2014.
[25] J. Luo, S. Jiang, H. Zhang, J. Jiang, and X. Liu, “A novel non-enzymatic glucose sensor based on Cu nanoparticle modified graphene sheets electrode,” Analytica chimica acta, vol. 709, pp. 47-53, 2012.
[26] H.-X. Wu, W.-M. Cao, Y. Li, G. Liu, Y. Wen, H.-F. Yang, and S.-P. Yang, “In situ growth of copper nanoparticles on multiwalled carbon nanotubes and their application as non-enzymatic glucose sensor materials,” Electrochimica Acta, vol. 55, no. 11, pp. 3734-3740, 2010.
[27] A. Salimi, and M. Roushani, “Non-enzymatic glucose detection free of ascorbic acid interference using nickel powder and nafion sol–gel dispersed renewable carbon ceramic electrode,” Electrochemistry Communications, vol. 7, no. 9, pp. 879-887, 2005.
[28] M. Mahmoudian, W. Basirun, P. M. Woi, M. Sookhakian, R. Yousefi, H. Ghadimi, and Y. Alias, “Synthesis and characterization of Co3O4 ultra-nanosheets and Co3O4 ultra-nanosheet-Ni(OH)2 as non-enzymatic electrochemical sensors for glucose detection,” Materials Science and Engineering: C, vol. 59, pp. 500-508, 2016.
[29] X. Kang, Z. Mai, X. Zou, P. Cai, and J. Mo, “A novel glucose biosensor based on immobilization of glucose oxidase in chitosan on a glassy carbon electrode modified with gold–platinum alloy nanoparticles/multiwall carbon nanotubes,” Analytical biochemistry, vol. 369, no. 1, pp. 71-79, 2007.
[30] M. Liu, R. Liu, and W. Chen, “Graphene wrapped Cu2O nanocubes: non-enzymatic electrochemical sensors for the detection of glucose and hydrogen peroxide with enhanced stability,” Biosensors and Bioelectronics, vol. 45, pp. 206-212, 2013.
[31] S. Ci, T. Huang, Z. Wen, S. Cui, S. Mao, D. A. Steeber, and J. Chen, “Nickel oxide hollow microsphere for non-enzyme glucose detection,” Biosensors and Bioelectronics, vol. 54, pp. 251-257, 2014.
[32] H. Zhu, L. Li, W. Zhou, Z. Shao, and X. Chen, “Advances in non-enzymatic glucose sensors based on metal oxides,” Journal of Materials Chemistry B, vol. 4, no. 46, pp. 7333-7349, 2016.
[33] T. Kulkarni, and G. Slaughter, “Application of semipermeable membranes in glucose biosensing,” Membranes, vol. 6, no. 4, pp. 55, 2016.
[34] J. Wang, “Glucose biosensors: 40 years of advances and challenges,” Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, vol. 13, no. 12, pp. 983-988, 2001.
[35] A. Babaei, and A. R. Taheri, “Nafion/Ni(OH)2 nanoparticles-carbon nanotube composite modified glassy carbon electrode as a sensor for simultaneous determination of dopamine and serotonin in the presence of ascorbic acid,” Sensors and Actuators B: Chemical, vol. 176, pp. 543-551, 2013.
[36] 張立德, 奈米材料: 五南圖書出版股份有限公司, 2002.
[37] 賴炤銘, and 李錫隆, “奈米材料的特殊效應與應用,” CHEMISTRY (THE CHINESE CHEM. SOC., TAIPEI), vol. 61, no. 4, pp. 585-597, 2003.
[38] 王世敏, "許祖勛, 傅晶," 北京: 化學工業出版社, 2002.
[39] S. S. Sawant, A. D. Bhagwat, and C. M. Mahajan, “Synthesis of cuprous oxide (Cu2O) nanoparticles-A review,” Journal of Nano-and Electronic Physics, vol. 8, no. 1, pp. 1035-1, 2016.
[40] M. Suleiman, M. Mousa, A. Hussein, B. Hammouti, T. B. Hadda, and I. Warad, “Copper (II)-oxide nanostructures: Synthesis, characterizations and their applications–review,” Journal of Materials and Environmental Science, vol. 4, no. 5, pp. 792-797, 2013.
[41] R. Wijesundera, “Fabrication of the CuO/Cu2O heterojunction using an electrodeposition technique for solar cell applications,” Semiconductor Science and Technology, vol. 25, no. 4, pp. 045015, 2010.
[42] G. Ren, D. Hu, E. W. Cheng, M. A. Vargas-Reus, P. Reip, and R. P. Allaker, “Characterisation of copper oxide nanoparticles for antimicrobial applications,” International journal of antimicrobial agents, vol. 33, no. 6, pp. 587-590, 2009.
[43] A. S. Zoolfakar, R. A. Rani, A. J. Morfa, A. P. O'Mullane, and K. Kalantar-Zadeh, “Nanostructured copper oxide semiconductors: a perspective on materials, synthesis methods and applications,” Journal of Materials Chemistry C, vol. 2, no. 27, pp. 5247-5270, 2014.
[44] J. Medina-Valtierra, C. Frausto-Reyes, G. Camarillo-Martínez, and J. A. Ramírez-Ortiz, “Complete oxidation of isopropanol over Cu4O3 (paramelaconite) coating deposited on fiberglass by CVD,” Applied Catalysis A: General, vol. 356, no. 1, pp. 36-42, 2009.
[45] J. Ramı́rez-Ortiz, T. Ogura, J. Medina-Valtierra, S. a. E. Acosta-Ortiz, P. Bosch, J. A. de Los Reyes, and V. H. Lara, “A catalytic application of Cu2O and CuO films deposited over fiberglass,” Applied Surface Science, vol. 174, no. 3-4, pp. 177-184, 2001.
[46] H. M. Xiao, S. Y. Fu, L. P. Zhu, Y. Q. Li, and G. Yang, “Controlled synthesis and characterization of CuO nanostructures through a facile hydrothermal route in the presence of sodium citrate,” European journal of inorganic chemistry, vol. 2007, no. 14, pp. 1966-1971, 2007.
[47] S. U. Nandanwar, and M. Chakraborty, “Synthesis of colloidal CuO/γ-Al2O3 by microemulsion and its catalytic reduction of aromatic nitro compounds,” Chinese Journal of Catalysis, vol. 33, no. 9-10, pp. 1532-1541, 2012.
[48] H. Zhang, X. Zhang, H. Li, Z. Qu, S. Fan, and M. Ji, “Hierarchical growth of Cu2O double tower-tip-like nanostructures in water/oil microemulsion,” Crystal growth & design, vol. 7, no. 4, pp. 820-824, 2007.
[49] B. Jirhennsons, and M. Straumanis, “Colloid Chemistry,” McMillan Co. New York, 1962.
[50] 陳慧英, 黃定加, and 朱秦億, “溶膠凝膠法在薄膜製備上之應用,” 化工技術, 無機薄膜之應用專輯, vol. 11, no. 7, 1999.
[51] H. Siddiqui, M. R. Parra, and F. Z. Haque, “Optimization of process parameters and its effect on structure and morphology of CuO nanoparticle synthesized via the sol− gel technique,” Journal of Sol-Gel Science and Technology, pp. 1-11, 2018.
[52] A. Tadjarodi, and R. Roshani, “A green synthesis of copper oxide nanoparticles by mechanochemical method,” Current Chemistry Letters, vol. 3, no. 4, pp. 215-220, 2014.
[53] M. K. Mun, W. O. Lee, J. W. Park, D. San Kim, G. Y. Yeom, and D. W. Kim, “Nanoparticles Synthesis and Modification using Solution Plasma Process,” Applied Science and Convergence Technology, vol. 26, no. 6, pp. 164-173, 2017.
[54] R. Akolkar, and R. M. Sankaran, “Charge transfer processes at the interface between plasmas and liquids,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 31, no. 5, pp. 050811, 2013.
[55] P. Rumbach, and D. Go, “Perspectives on Plasmas in Contact with Liquids for Chemical Processing and Materials Synthesis,” Topics in Catalysis, vol. 60, no. 12-14, pp. 799-811, 2017.
[56] Y. L. Thong, O. H. Chin, B. H. Ong, and N. M. Huang, “Synthesis of silver nanoparticles prepared in aqueous solutions using helium dc microplasma jet,” Japanese Journal of Applied Physics, vol. 55, no. 1S, pp. 01AE19, 2015.
[57] J. Liu, B. He, Q. Chen, H. Liu, J. Li, Q. Xiong, X. Zhang, S. Yang, G. Yue, and Q. H. Liu, “Plasma electrochemical synthesis of cuprous oxide nanoparticles and their visible-light photocatalytic effect,” Electrochimica Acta, vol. 222, pp. 1677-1681, 2016.
[58] Y. Su, H. Guo, Z. Wang, Y. Long, W. Li, and Y. Tu, “Au@ Cu2O core-shell structure for high sensitive non-enzymatic glucose sensor,” Sensors and Actuators B: Chemical, vol. 255, pp. 2510-2519, 2018.
[59] A. Molazemhosseini, L. Magagnin, P. Vena, and C.-C. Liu, “Single-use nonenzymatic glucose biosensor based on CuO nanoparticles ink printed on thin film gold electrode by micro-plotter technology,” Journal of Electroanalytical Chemistry, vol. 789, pp. 50-57, 2017.
[60] X. Xiao, H. Li, Y. Pan, and P. Si, “Non-enzymatic glucose sensors based on controllable nanoporous gold/copper oxide nanohybrids,” Talanta, vol. 125, pp. 366-371, 2014.
[61] Z. H. Ibupoto, K. Khun, V. Beni, X. Liu, and M. Willander, “Synthesis of novel CuO nanosheets and their non-enzymatic glucose sensing applications,” Sensors, vol. 13, no. 6, pp. 7926-7938, 2013.
[62] Q. Liu, Z. Jiang, Y. Tang, X. Yang, M. Wei, and M. Zhang, “A facile synthesis of a 3D high-index Au NCs@ CuO supported on reduced graphene oxide for glucose sensing,” Sensors and Actuators B: Chemical, vol. 255, pp. 454-462, 2018.
[63] P. Rumbach, M. Witzke, R. M. Sankaran, and D. B. Go, “Decoupling interfacial reactions between plasmas and liquids: charge transfer vs plasma neutral reactions,” Journal of the American Chemical Society, vol. 135, no. 44, pp. 16264-16267, 2013.
[64] B.-B. Jiang, X.-W. Wei, F.-H. Wu, K.-L. Wu, L. Chen, G.-Z. Yuan, C. Dong, and Y. Ye, “A non-enzymatic hydrogen peroxide sensor based on a glassy carbon electrode modified with cuprous oxide and nitrogen-doped graphene in a nafion matrix,” Microchimica Acta, vol. 181, no. 11-12, pp. 1463-1470, 2014.
[65] Y. Li, Y. Zhong, Y. Zhang, W. Weng, and S. Li, “Carbon quantum dots/octahedral Cu2O nanocomposites for non-enzymatic glucose and hydrogen peroxide amperometric sensor,” Sensors and Actuators B: Chemical, vol. 206, pp. 735-743, 2015.
[66] L. Zhang, Y. Ni, and H. Li, “Addition of porous cuprous oxide to a Nafion film strongly improves the performance of a nonenzymatic glucose sensor,” Microchimica Acta, vol. 171, no. 1-2, pp. 103-108, 2010.
[67] B. D. DISCOVER, “X-RAY DIFFRACTION.”
[68] S. i. a. Suitcase, “Introduction to Ultraviolet - Visible Spectroscopy 1 (UV) ” Royal Society of Chemistry, 2009.
[69] J. Heinze, “Cyclic voltammetry—“electrochemical spectroscopy”. New analytical methods (25),” Angewandte Chemie International Edition in English, vol. 23, no. 11, pp. 831-847, 1984.
[70] G. Wang, L. Zhang, and J. Zhang, “A review of electrode materials for electrochemical supercapacitors,” Chemical Society Reviews, vol. 41, no. 2, pp. 797-828, 2012.
[71] 胡啟章, 電化學原理與方法: 五南圖書出版股份有限公司, 2002.
[72] J. Wang, Analytical electrochemistry: John Wiley & Sons, 2006.
[73] A. J. Bard, L. R. Faulkner, J. Leddy, and C. G. Zoski, Electrochemical methods: fundamentals and applications: wiley New York, 1980.
[74] T. J. Roussel, D. J. Jackson, R. P. Baldwin, and R. S. Keynton, “Amperometric Techniques,” Encyclopedia of Microfluidics and Nanofluidics, pp. 1-11, 2013.
[75] A. Shrivastava, and V. B. Gupta, “Methods for the determination of limit of detection and limit of quantitation of the analytical methods,” Chronicles of young scientists, vol. 2, no. 1, pp. 21, 2011.
[76] Y. K. Heo, M. A. Bratescu, T. Ueno, and N. Saito, “Synthesis of mono-dispersed nanofluids using solution plasma,” Journal of applied physics, vol. 116, no. 2, pp. 024302, 2014.
[77] Q. Chen, T. Kaneko, and R. Hatakeyama, “Reductants in gold nanoparticle synthesis using gas–liquid interfacial discharge plasmas,” Applied Physics Express, vol. 5, no. 8, pp. 086201, 2012.
[78] T. Velusamy, A. Liguori, M. Macias‐Montero, D. B. Padmanaban, D. Carolan, M. Gherardi, V. Colombo, P. Maguire, V. Svrcek, and D. Mariotti, “Ultra‐small CuO nanoparticles with tailored energy‐band diagram synthesized by a hybrid plasma‐liquid process,” Plasma Processes and Polymers, vol. 14, no. 7, 2017.
[79] S. Junglee, L. Urban, H. Sallanon, and F. Lopez-Lauri, “Optimized assay for hydrogen peroxide determination in plant tissue using potassium iodide,” American Journal of Analytical Chemistry, vol. 5, no. 11, pp. 730, 2014.
[80] M. Shahmiri, N. A. Ibrahim, F. Shayesteh, N. Asim, and N. Motallebi, “Preparation of PVP-coated copper oxide nanosheets as antibacterial and antifungal agents,” Journal of Materials Research, vol. 28, no. 22, pp. 3109-3118, 2013.
[81] L. Chen, Y. Zhang, P. Zhu, F. Zhou, W. Zeng, D. D. Lu, R. Sun, and C. Wong, “Copper salts mediated morphological transformation of Cu2O from cubes to hierarchical flower-like or microspheres and their supercapacitors performances,” Scientific reports, vol. 5, pp. 9672, 2015.
[82] B. Gu, C. Xu, G. Zhu, S. Liu, L. Chen, M. Wang, and J. Zhu, “Layer by layer immobilized horseradish peroxidase on zinc oxide nanorods for biosensing,” The Journal of Physical Chemistry B, vol. 113, no. 18, pp. 6553-6557, 2009.
[83] B. Vidhyadharan, I. I. Misnon, R. A. Aziz, K. Padmasree, M. M. Yusoff, and R. Jose, “Superior supercapacitive performance in electrospun copper oxide nanowire electrodes,” Journal of Materials Chemistry A, vol. 2, no. 18, pp. 6578-6588, 2014.
[84] P. Xu, J. Liu, T. Liu, K. Ye, K. Cheng, J. Yin, D. Cao, G. Wang, and Q. Li, “Preparation of binder-free CuO/Cu 2 O/Cu composites: A novel electrode material for supercapacitor applications,” RSC Advances, vol. 6, no. 34, pp. 28270-28278, 2016.
[85] M.-J. Song, S. W. Hwang, and D. Whang, “Non-enzymatic electrochemical CuO nanoflowers sensor for hydrogen peroxide detection,” Talanta, vol. 80, no. 5, pp. 1648-1652, 2010.
[86] F. Dong, P. Zhang, K. Li, X. Liu, and P. Zhang, “Nano Copper Oxide-Modified Carbon Cloth as Cathode for a Two-Chamber Microbial Fuel Cell,” Nanomaterials, vol. 6, no. 12, pp. 238, 2016.
[87] Q. He, J. Liu, X. Liu, G. Li, P. Deng, and J. Liang, “Preparation of Cu2O-Reduced Graphene Nanocomposite Modified Electrodes towards Ultrasensitive Dopamine Detection,” Sensors, vol. 18, no. 1, pp. 199, 2018.
[88] L. Zhang, H. Li, Y. Ni, J. Li, K. Liao, and G. Zhao, “Porous cuprous oxide microcubes for non-enzymatic amperometric hydrogen peroxide and glucose sensing,” Electrochemistry Communications, vol. 11, no. 4, pp. 812-815, 2009.
[89] P. Gao, and D. Liu, “Facile synthesis of copper oxide nanostructures and their application in non-enzymatic hydrogen peroxide sensing,” Sensors and Actuators B: Chemical, vol. 208, pp. 346-354, 2015.
[90] H. Heli, M. Jafarian, M. Mahjani, and F. Gobal, “Electro-oxidation of methanol on copper in alkaline solution,” Electrochimica acta, vol. 49, no. 27, pp. 4999-5006, 2004.
[91] D. Chirizzi, M. R. Guascito, E. Filippo, C. Malitesta, and A. Tepore, “A novel nonenzymatic amperometric hydrogen peroxide sensor based on CuO@ Cu2O nanowires embedded into poly (vinyl alcohol),” Talanta, vol. 147, pp. 124-131, 2016.
[92] Z. Yan, J. Zhao, L. Qin, F. Mu, P. Wang, and X. Feng, “Non-enzymatic hydrogen peroxide sensor based on a gold electrode modified with granular cuprous oxide nanowires,” Microchimica Acta, vol. 180, no. 1-2, pp. 145-150, 2013.
[93] A. Gu, G. Wang, X. Zhang, and B. Fang, “Synthesis of CuO nanoflower and its application as a H2O2 sensor,” Bulletin of Materials Science, vol. 33, no. 1, pp. 17-20, 2010.
[94] S. Muralikrishna, K. Sureshkumar, Z. Yan, C. Fernandez, and T. Ramakrishnappa, “Non-enzymatic amperometric determination of glucose by CuO nanobelt graphene composite modified glassy carbon electrode,” Journal of the Brazilian Chemical Society, vol. 26, no. 8, pp. 1632-1641, 2015.
[95] Y. Wang, Z. Ji, X. Shen, G. Zhu, J. Wang, and X. Yue, “Facile growth of Cu2O hollow cubes on reduced graphene oxide with remarkable electrocatalytic performance for non-enzymatic glucose detection,” New Journal of Chemistry, vol. 41, no. 17, pp. 9223-9229, 2017.
[96] H. Maaoui, S. K. Singh, F. Teodorescu, Y. Coffinier, A. Barras, R. Chtourou, S. Kurungot, S. Szunerits, and R. Boukherroub, “Copper oxide supported on three-dimensional ammonia-doped porous reduced graphene oxide prepared through electrophoretic deposition for non-enzymatic glucose sensing,” Electrochimica Acta, vol. 224, pp. 346-354, 2017.
[97] M.-m. Guo, P.-s. Wang, C.-h. Zhou, Y. Xia, W. Huang, and Z. Li, “An ultrasensitive non-enzymatic amperometric glucose sensor based on a Cu-coated nanoporous gold film involving co-mediating,” Sensors And Actuators B: Chemical, vol. 203, pp. 388-395, 2014.
[98] X. Fan, N. Hua, J. Xu, Z. Wang, H. Jia, and C. Wang, “Controllable synthesis of two different morphologies of Cu2O particles with the assistance of carbon dots,” RSC Advances, vol. 4, no. 32, pp. 16524-16527, 2014.
[99] P. B. Hammannavar, and B. Lobo, “Spectroscopic Studies on Films of Lead Nitrate Doped Polyvinyl Alcohol–Polyvinyl Pyrrolidone Blend,” Material Science Research India, vol. 15, no. 1, pp. 55-67, 2018.

無法下載圖示 全文公開日期 2023/08/16 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE