簡易檢索 / 詳目顯示

研究生: Do Thi Anh Thu
Do Thi Anh Thu
論文名稱: Synthesis of porphyrin-conjugated confeito-like gold nanoparticles for photodynamic therapy
Synthesis of porphyrin-conjugated confeito-like gold nanoparticles for photodynamic therapy
指導教授: 今榮東洋子
Toyoko Imae
口試委員: 今榮東洋子
Toyoko Imae
氏原真樹
Masaki Ujihara
高震宇
Chen-Yu Kao
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 67
中文關鍵詞: confeito-like金奈米粒子紫質TCPP
外文關鍵詞: confeito-like gold nanoparticles, porphyrin TCPP, photodynamic therapy, singlet oxygen generation
相關次數: 點閱:195下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

金奈米粒子( Gold nanoparticles, AuNPs )具有化學惰性和生物相容性,在生物傳感器、藥物輸送等方面具有重要的醫學應用價值。當具10 -100奈米尺寸的金奈米粒子暴露在光輻射下,金奈米粒子內的電子會受電場的驅動而產生震盪,並在金奈米粒子表面產生表面電漿,其進而導致它們吸收和散射光(表面等離子共振)。本研究採用綠色化學方法合成了confeito-like金奈米粒子。利用紫外-可見光譜和透射電子顯微鏡對confeito-like的金奈米粒子進行分析。Confeito-like的金奈米粒子平均粒徑約40 nm且在500至700 nm處具有表面等離子體激元帶(surface plasmon band)。紫質(Porphyrins,TCPP)是一種典型的光敏藥物,在415 nm處具有Soret吸收帶且在510、550、580和640 nm附近具有4個較小的Q帶(Q bands),其可用於修飾金奈米粒子。本研究旨在合成TCPP共軛的confeito-like金奈米粒子,以應用於光動力療法(photodynamic therapy)。利用半胱氨酸(L-cysteine)和碳點(carbon dots)保護的氧化鐵(Fe3O4@C)共價鍵結,製備了TCPP共軛的confeito-like的金奈米粒子 (Au@Cys@TCPP和Au@FeC@TCPP)。透過產生單重態氧(singlet oxygen)來評估TCPP與confeito-like金奈米粒子之有效性地結合。結果表明, TCPP共軛的confeito-like的金奈米粒子及confeito-like的金奈米粒子於光動力療法應用中具有發展潛力。


Gold nanoparticles (AuNPs) possess the characteristic of both inertness and biocompatibility which have a great medical application in the biosensor and drug delivery. When AuNPs with 10-100 nm in size are exposed to optical radiation, the electrons within the AuNPs resonate, causing them to absorb and scatter the light (called the surface plasmon resonance). In biomedicine, this unique optical property can be exploited for application such as photodynamic therapy. In this study, confeito-like gold nanoparticles were synthesized by green chemistry method. UV-vis absorption spectroscopy and transmission electron microscopy were used to characterization of confeito-like AuNPs.
This study aims the synthesis of porphyrin-conjugated confeito-like AuNPs (Au@Cys@TCPP and Au@FeC@TCPP) for photodynamic therapy (PDT) application. They were prepared by covalent binding, with using L-cysteine and carbon dots-protected iron oxide (FeC or Fe3O¬4@C) as adapted linkages. For L-cysteine, the thiol group of L-cysteine was bound to confeito-like AuNPs and also formed amide bonding between porphyrin TCPP and L-cysteine to obtained Au@Cys@TCPP which was confirmed by FT-IR spectroscopy. On the other hand, co-precipitation procedure was the method to obtain magnetic Fe3O4 particles and the hydrothermal procedure was used for the synthesis of Fe3O4@C. Fe¬3O4@C has carboxylic and amine groups which can be formed the amide bonding between confeito-like AuNPs and porphyrin TCPP. Both of porphyrin-conjugated confeito-like AuNPs were characterized by using FT-IR spectroscopy, UV-vis spectroscopy and transmission electron microscopy. The effectiveness of the porphyrin-conjugated confeito-like gold nanoparticles was evaluated by the singlet oxygen generation. These results indicate a highly potential of not only porphyrin-conjugated confeito-like AuNPs but also confeito-like AuNPs for PDT.

Abstract i 摘要 ii Table of Contents iii List of Figures v List of Tables viii Chapter 1 GENERAL INTRODUCTION 1 1.1 Introduction 1 1.1.1 Gold nanoparticle 1 1.1.2 L-cysteine and Fe3O4@C 3 1.1.3 Photodynamic therapy and photosensitizer 5 1.1.4 Singlet oxygen 8 1.2 Motivation and objective of the work 10 Chapter 2 EXPERIMENTAL SECTION 11 2.1 Materials and reagents 11 2.2 Instruments 11 2.3 Synthesis procedure 12 2.3.1 Synthesis of porphyrin-conjugated confeito-like gold nanoparticles via L- cysteine linkage (Au@Cys@TCPP) 12 2.3.2 Synthesis of porphyrin-conjugated confeito-like gold nanoparticles via carbon dots-protected iron oxide nanoparticles (Fe3O4@C) linkage (Au@FeC@TCPP) 13 2.3.3 Measurement of fluorescence quantum yield 14 2.3.3 Detection of singlet oxygen generation 15 Chapter 3 Results and Discussion 18 3.1 Characterization of confeito-like gold nanoparticles 18 3.1.1 UV-vis absorption spectra 18 3.1.2 Infrared absorption spectra 18 3.1.3 TEM and SEM images 19 3.2 Porphyrin-conjugated confeito-like gold nanoparticles via L-cystine as linkage (Au@Cys@TCPP) 22 3.2.1 UV-vis absorption 22 3.2.2 Infrared absorption spectra 23 3.3.3 TEM and SEM images 24 3.3 Porphyrin-conjugated confeito-like gold nanoparticles via carbon dots-protected iron oxide (Fe3O4@C) linkage (Au@FeC@TCPP) 26 3.3.1 UV-vis absorption spectra 26 3.3.2 Infrared absorption spectra 27 3.3.3 TEM and SEM images 29 3.3.4 X-ray photoelectron spectroscopy (XPS) 30 3.4 Luminescence of porphyrin-conjugated confeito-like AuNPs via L-cysteine and Fe3O4@C as linkage 35 3.5 Quantum yield measurement 36 3.6 Measurement of singlet oxygen 38 3.6.1 Singlet oxygen generation 38 3.6.2 Time scan measurement 41 Chapter 4 SUMMARY AND CONCLUSION 49 List of References 51

1. Keunen, R., et al., Stable ligand-free stellated polyhedral gold nanoparticles for sensitive plasmonic detection. Nanoscale, 2016. 8(5): p. 2575-83.
2. Qazi, U.Y. and R. Javaid, A Review on Metal Nanostructures: Preparation Methods and Their Potential Applications. Advances in Nanoparticles, 2016. 05(01): p. 27-43.
3. Tomar, A. and G. Garg, Short review on application of gold nanoparticles. Global Journal of Pharmacology, 2013. 7(1): p. 34-38.
4. Jana, N.R., L. Gearheart, and C. J. Murphy, Seeding Growth for Size Control of 5-40 nm Diameter Gold Nanoparticles. Langmuir, 2001. 17(22): p. 6782 – 6786.
5. Ziegler, C. and A. Eychmüller, Seeded Growth Synthesis of Uniform Gold Nanoparticles with Diameters of 15−300 nm. The Journal of Physical Chemistry C, 2011. 115(11): p. 4502-4506.
6. Joseph, D. and K.E. Geckeler, Surfactant-directed multiple anisotropic gold nanostructures: synthesis and surface-enhanced Raman scattering. Langmuir, 2009. 25(22): p. 13224-31.
7. Kuo, C.H. and M.H. Huang, Synthesis of branched gold nanocrystals by a seeding growth approach. Langmuir, 2005. 21(5): p. 2012 – 2016.
8. Das, A.K. and C.R. Raj, Iodide-Mediated Reduction of AuCl4– and a New Green Route for the Synthesis of Single Crystalline Au Nanostructures with Pronounced Electrocatalytic Activity. The Journal of Physical Chemistry C, 2011. 115(43): p. 21041-21046.
9. Li, Q., et al., Synthesis and stability evaluation of size-controlled gold nanoparticles via nonionic fluorosurfactant-assisted hydrogen peroxide reduction. Journal of Materials Chemistry, 2012. 22(27): p. 13564.
10. Kimling, J., et al., Turkevich method for gold nanoparticles synthesis revisited. The Journal Physical Chemistry B, 2006. 110(32): p. 15700-15707.
11. Goulet, P.J.G., and R.B. Lennox, New Insights into Brust−Schiffrin Metal Nanoparticle Synthesis. J Am Chem Soc, 2010. 132(28): p. 9582-9584.
12. Li, Y., et al., Mechanistic insights into the Brust-Schiffrin two-phase synthesis of organo-chalcogenate-protected metal nanoparticles. J Am Chem Soc, 2011. 133(7): p. 2092-5.
13. Aizpurua, J., and R. Hillenbrand, Localized Surface Plasmons: Basics and Applications in Field-Enhanced Spectroscopy. Plasmonics, Springer Series in Optical Sciences, 2012. 167: p. 151-176.
14. Sharma, J., Y. Tai, and T. Imae, Synthesis of confeito-like gold nanostructures by a solution phase galvanic reaction. The Journal Physical Chemistry C, 2008. 112(44): p. 17033-17037.
15. Ujihara, M. and T. Imae, Versatile one-pot synthesis of confeito-like Au nanoparticles and their surface-enhanced Raman scattering effect. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013. 436: p. 380-385.
16. Chai, F., et al., L-cysteine functionalized gold nanoparticles for the colorimetric detection of Hg2+ induced by ultraviolet light. Nanotechnology, 2010. 21(2): p. 025501.
17. Acres, R.G., et al., Mechanisms of Aggregation of Cysteine Functionalized Gold Nanoparticles. The Journal of Physical Chemistry C, 2014. 118(19): p. 10481-10487.
18. Basel, M.T., et al., Cell-delivered magnetic nanoparticles caused hyperthermia-mediated increased survival in a murine pancreatic cancer model. Int J Nanomedicine, 2012. 7: p. 297-306.
19. Huang, Z, A review of progress in clinical photodynamic therapy. Technol Cancer Res Treat. 2005 June. 4(3): p. 283-293.
20. Sibata, C.H., et al., Photodynamic therapy: a new concept in medical treatment. Braz J Med Bio Res, 2000. 33(8): p. 869-880.
21. Issa, M.C.A., Mônica M.A., Photodynamic therapy: a review of the literature and image documentation. An Bras Dermatol, 2010. 85(4): p. 501-11.
22. Kennedy, J.C., R.H. Pottier, and D.C.Pross, Photodynamic therapy with Endogenous protoporphyrin IX: basic principles and present clinical experience. Journal Photochemistry and Photobiology: Biology, 1990. 6: p. 143-148.
23. Chen, J., et al., New technology for deep light distribution in tissue for phototherapy. Cancer J, 2002. 8(2): p. 154-163.
24. Levy, J.G., Photosensitizers in photodynamic therapy. Semin Oncol, 1994. 21(6 Suppl 15): p. 4-10.
25. DeRosa M.C., Robert J.C., Photosensitized singlet oxygen and its applications. Coordination Chemistry Reviews, 2002. 233-234: p. 351-371.
26. Pena Luengas, S.L., et al., Enhanced singlet oxygen production by photodynamic therapy and a novel method for its intracellular measurement. Cancer Biother Radiopharm, 2014. 29(10): p. 435-43.
27. Bagrov, I.V., et al., Observation of the luminescence of singlet oxygen at λ = 1270 nm under LED irradiation of CCl4. Optics and Spectroscopy, 2012. 113(1): p. 57-62.
28. Rajora, M.A., J.W.H. Lou and G. Zheng, Advancing porphyrin’s biomedical utility via supramolecular chemistry. Chem Soc Rev, 2017. 46: p. 6433-6469.
29. Kadish, K.M., K.M. Smith and R. Guilard, The Porphyrin Handbook, 1999. 2.
30. Harman, D., Aging: A theory based on free radical and radiation chemistry. J. Gerontol., 1956. 11: p. 298-300.
31. Harman, D., Free radical theory of aging. Mutat. Res., 1992. 275(3-6): p. 257-266.
32. Halliwell, B., and J. M. C. Gutteridge, Free Radicals in Biology and Medicine. Oxford University Press, Oxford, 4th edn., 2007.
33. Ogilby, P.R., Singlet oxygen: there is indeed something new under the sun. Chem Soc Rev, 2010. 39(8): p. 3181-209.
34. Segado, M. and M. Reguero, Mechanism of the photochemical process of singlet oxygen production by phenalenone. Phys Chem Chem Phys, 2011. 13(9): p. 4138-48.
35. Williams, A.T.R., S.A. Winfield, and J.N. Miller, Relative fluorescence quantum yields using a computer-controlled luminescence spectrometer. The Analyst, 1983. 108(1290): p. 1067.
36. Dhami, S., et al., Phthalocyanine fluorescence at high concentration: dimers or reabsorption effect. Photochem. Photobiol, 1995. 61(4): p. 341-346.
37. Zhang, Y., et al., Effect of reaction temperature on structure and fluorescence properties of nitrogen-doped carbon dots. Applied Surface Science, 2016. 387: p. 1236-1246.
38. Shen, J., et al., Highly fluorescent N,S-co-doped carbon dots: synthesis and multiple applications. New Journal of Chemistry, 2017. 41(19): p. 11125-11137.
39. Ashjari, M., et al., Efficient functionalization of gold nanoparticles using cysteine conjugated protoporphyrin IX for singlet oxygen production in vitro. RSC Adv., 2015. 5: p. 104621-104628.
40. Khoury, C.G., and T.V. Dinh, Gold Nanostars For Surface Enhanced Raman Scattering: Synthesis, Characterization and Optimization. The Journal Physical Chemistry C, 2008. 112(48): p. 18849-18859.
41. Petroski, J., and M. A. El-Slayed, FTIR study of the Adsorption of the Capping Material to Different Platinum Nanoparticle Shapes. The Journal of Physical Chemistry A, 2004. 107, p. 8731-8375.
42. Satnami, M.L., et al., Interaction of thiolated amino acids and peptide onto the gold nanoparticle surface: Radical scavenging activity. Indian Journal of Chemistry, 2015. 54 A: p. 1206-1214.
43. Bera, R., et al., Graphene–Porphyrin Nanorod Composites for Solar Light Harvesting. ACS Sustainable Chemistry & Engineering, 2016. 4(3): p. 1562-1568.
44. Zhang, L., et al., Self-assembly of L-cysteine–old nanoparticles as chiral probes for visual recognition of 3,4- dihydroxyphenylalanine enantiomers. RSC Adv., 2015. 5, 27003-27008.
45. Rahimi, R., et al., Synthesis, characterization, and photocurrent generation of a new nanocomposite based Cu–TCPP MOF and ZnO nanorod. RSC Adv., 2015. 5, 46624-46631.
46. Haruta, M., et al., Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide. J. Catal., 1989. 115: p. 301-309.
47. Moulder, J. F., W. F. Stickle, P. E. Sobol and K. D. Bomben, Handbook of X-ray Photoelectron Spectroscopy, ed. J. Chastain, Perkin-Elmer Corporation, Norwalk, CT, 1992.
48. Das, S.K., et al., Synthesis, characterization and catalytic activity of gold nanoparticles biosynthesized with Rhizopus oryzae protein extract. Green Chemistry, 2012. 14(5): p. 1322.
49. Efa, M.T. and T. Imae, Hybridization of carbon-dots with ZnO nanoparticles of different sizes. Journal of the Taiwan Institute of Chemical Engineers, 2018.
50. Wilson, D. and M.A. Langell, XPS analysis of oleylamine/oleic acid capped Fe3O4 nanoparticles as a function of temperature. Applied Surface Science, 2014. 303: p. 6-13.
51. Poulin, S., et al., Confirmation of X-ray photoelectron spectroscopy peak attributions of Nanoparticulate Iron Oxides, Using Symmetric Peak Component Line Shapes. The Journal Physical Chemistry C, 2010. 114: p. 10711–10718.
52. Yamashita, T. and P. Hayes, Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Applied Surface Science, 2008. 254(8): p. 2441-2449.
53. Fadley, C.S., and D. A. Shirley, Multiplet spiltting of core-electron binding energies in transition-metal ions. Physical review letter, 1970. 23(24): p. 1397-1401.
54. Vankayala, R., et al., First demonstration of gold nanorods-mediated photodynamic therapeutic destruction of tumors via near infra-red light activation. Small, 2014. 10(8): p. 1612-22.
55. Zhao, T., et al., Gold nanorods as dual photo-sensitizing and imaging agents for two-photon photodynamic therapy. Nanoscale, 2012. 4(24): p. 7712-9.
56. Vankayala, R., et al., Metal nanoparticles sensitize the formation of singlet oxygen. Angew Chem Int Ed Engl, 2011. 50(45): p. 10640-4.
57. Vankayala, R., et al., Morphology dependent photosensitization and formation of singlet oxygen (1Δg) by gold and silver nanoparticles and its application in cancer treatment. Journal of Materials Chemistry B, 2013. 1(35): p. 4379.
58. Zhang, W., et al., Photogeneration of reactive oxygen species on uncoated silver, gold, nickel, and silicon nanoparticles and their antibacterial effects. Langmuir, 2013. 29(15): p. 4647-51.
59. Hayden, S.C., et al., Plasmonic enhancement of photodynamic cancer therapy. Journal of Photochemistry and Photobiology A: Chemistry, 2013. 269: p. 34-41.
60. Dulkeith, E., et al., Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects. Phys Rev Lett, 2002. 89(20): p. 203002.
61. Ujihara, M., N.M. Dang, and T. Imae, Fluorescence Quenching of Uranine on Confeito-Like Au Nanoparticles. Journal of Nanoscience and Nanotechnology, 2014. 14(7): p. 4906-4910.

無法下載圖示 全文公開日期 2023/07/20 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE