簡易檢索 / 詳目顯示

研究生: 梁高維
Kao-Wei Liang
論文名稱: 高分歧化聚合物之合成及其於鋰離子電池添加劑之應用
Synthesis of Hyperbranch Polymer and Its Application for an Additive in Lithium Ion Battery
指導教授: 黃炳照
Bing-Joe Hwang
口試委員: 王復民
none
陳崇賢
Chorng-Shyan Chern
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 211
中文關鍵詞: 高分歧化聚合物SEI layer熱穩定性鋰離子電池
外文關鍵詞: hyperbranch polymer, SEI layer, thermal stability, lithium ion battery
相關次數: 點閱:237下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

近年來添加劑於鋰離子電池之陰極材料的研究逐漸受到重視,本研究以A2B3的形式合成不同分歧程度(Degree of branch, DB)之高分歧化聚合物,並將其作為添加劑應用於鋰離子電池之陰極,經過電化學程序後,添加劑會於陰極材料鋰鈷氧(LiCoO2)表面形成固態電解質介面(solid electrolyte interface,SEI ),而提升鋰鈷氧於電池系統中的熱穩定性。本文亦探討與高分歧化聚合物具有相同重複單元結構的模式化合物(Model compound)以及線性聚合物等添加劑對電池性能的影響,並試圖討論其熱穩定性和反應的機制。當電池經適當循環以確定 SEI 層穩定成長後,將電池充電至4.2 V 後,以DSC對電極材料進行測試,可以發現(1)分歧化程度越高對熱穩定性之提升較為顯著;(2)添加劑材料本身分子量較大,其結構物的熱穩定性也越好,而添加入電極後也會提升鋰鈷氧材料的熱穩定性,但是經過電池的循環測試可以發現,當分子量過大(重複單元數量增加),除了使得鋰離子傳導受阻,而降低電池循環能力,亦會降低添加劑於電極材料中的分散性,使得添加劑無法完全包覆鋰鈷氧材料,導致熱穩定性無顯著的提升。


Recently, additives for cathode material in lithium ion battery have been considerably received a great attention. In this work, several hyperbranch polymers with different degree of branch for A2B3-type additive have been successfully synthesized. After electrochemical process, these additives form the SEI layer on the surface of lithium cobalt oxide (LiCoO2, cathode material), which can enhance the thermal stability of lithium cobalt oxide in battery system. In order to discuss the performance outcome and to find out the reaction mechanism for the synthesized additives, model compound and linear polymer with the same repeat unit of hyperbranch polymer were also observed as additives in the battery system. After 5 cycles ( the SEI layer is completely formed), the full charge of electrode was analyzed using DSC test. The resulting test showed two phenomenon (1) the higher degree of branch of polymers provides outstanding enhancement of thermal stability (2) the higher molecular weight of additives can have a good thermal stability due to their stable structure. So that, these additives can give better thermal stability when added in the electrode. However, the cycling performance showed that the higher molecular weight results in (1) blocking of Li+ ion transport which made low cycling performance (2) reducing the ability of additives to be dispersed in the electrode which caused the SEI layer could not totally cover on the lithium cobalt oxide to achieve a good thermal stability enhancement.

摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VII 表目錄 XII 第一章 緒論 1 1-1前言 1 1-2 研究動機與目的 8 第二章 文獻回顧 11 2-1 二次鋰離子電池之組成與機制 11 2-2 二次鋰離子電池之各元件介紹 13 2-2-1 正極 (陰極) 13 2-2-2 負極 (陽極) 16 2-2-3 隔離膜 18 2-2-4 電解液 19 2-3 電解液添加劑 23 2-3-1 SEI (Solid electrolyte interface,固液電解質界面) 24 2-3-2 還原型添加劑 27 2-3-3 反應型添加劑 31 2-3-4 正極保護添加劑 34 2-3-5 鋰鹽穩定劑 38 2-3-6 改善沉積鋰金屬的添加劑 39 2-3-7 安全性添加劑 40 2-3-8 其他類型功能添加劑 50 2-4 安全性改質的技術及進展 52 2-4-1 電極材料本身的熱穩定性 54 2-4-2 電池安全機制 58 第三章 實驗方法 63 3-1 實驗儀器設備 63 3-2 實驗藥品器材 65 3-3 實驗步驟 67 3-3-1 1-phenyl-1H-pyrrole-2,5-dione (A) 單體合成 67 3-3-2 Aniline(B)單體純化 68 3-3-3 1,1'-(4,4'-methylenebis(4,1-phenylene))bis(1H-pyrrole -2,5-dione), BMI (A2) 單體合成 69 3-3-4 B3(4,4',4''-methanetriyltrianiline)單體合成 70 3-3-5 反應觸媒(1-butyl-3-methyl-1H-imidazol-3-ium hydroxide) 之合成 73 3-3-6 AB寡聚物之合成 74 3-3-7 A2B2線性聚合物之合成 75 3-3-8 A2B3分歧化聚合物之合成 76 3-3-9 陰極(正極)極片之製備 80 3-3-10 陽極(負極)極片之製備 82 3-3-11 電池組裝 84 3-4 材料鑑定分析 87 3-4-1 掃瞄式電子顯微鏡分析(SEM) 87 3-4-2 能量散佈分析儀(EDS) 87 3-4-3 微分掃描熱卡分析儀 (DSC) 87 3-4-4 核磁共振儀分析(NMR) 89 3-4-5 傅立葉轉換紅外線光譜儀(FTIR) 90 3-4-6 高解析光電子能譜儀(XPS) 90 3-4-7 熱重量分析儀 (TGA) 91 3-4-8 膠體滲透層析儀(GPC) 91 3-5 材料電化學特性分析 92 3-5-1 電池性能測試 92 3-5-2 循環伏安分析 92 第四章 結果與討論 93 4-1 材料的合成鑑定與性質分析 94 4-1-1 (1-phenyl-1H-pyrrole-2,5-dione)單體A材料的合成鑑定與 性質分析 94 4-1-2 A2 (1,1'-(4,4'-methylenebis(4,1-phenylene))bis (1H-pyrrole-2,5-dione))單體材料的合成鑑定與性質分析 …………………………………………………………….98 4-1-3 B3(4,4',4''-methanetriyltrianiline)單體材料的合成鑑定與性 質分析 102 4-1-4 寡聚物AB的合成鑑定與性質分析 110 4-1-4 線性聚合物A2B2的合成鑑定與性質分析 114 4-1-5 A2B3樹枝狀聚合物的合成鑑定與性質分析 118 4-2 各聚合物的電化學性質與電性表現 128 4-2-1 寡聚物AB的電化學性質與電性表現 128 4-2-2 線性聚合物A2B2的電化學性質與電性表現 136 4-2-3 A2B3高分歧化聚合物的電化學性質與電性表現 140 4-3 各添加劑對電池的熱穩定性分析 144 4-4 各電極的表面分析及討論 149 4-4-1 寡聚物AB 149 4-4-2 A2B3高分歧化聚合物 164 4-5 綜合討論 176 第五章 結論 181 未來展望 183 附表A [120] 184 附錄B 186 參考文獻 187

1. 林振華 and 林振富, eds. 充電式鋰離子電池之材料與應用. 充電式鋰離子
電池之材料與應用.
2. Nagaura T, T.K., Prog Batteries Sol Cells 1990. 9:209-217.
3. P.G. Balakrishnan, R.R., T. Prem Kumar, Safety mechanisms in lithium-ion
batteries. Journal of Power Sources 155: p. 401–414.
4. Winter M., B.J.O., Spahr M. E. and Novák P., Advanced Materials 10 (1998). 725.
5. S. Tobishima, J.I.Y., J. Power Sources 81–82 (1999) 882.
6. U. von Sacken, E.N., A. Sundher, J.R. Dahn, Solid State Ionics69 (1994). 284.
7. 鄭朝陽, 聯合報 2009. 169期:D2.
8. 楊模樺, 鋰電池材料技術發展. 工業材料雜誌 2006. 237:137.
9. Padhi AK, N.K., Goodenough JB, Phospho-olivines as positive-electrode materials
for rechargeable lithium batteries. J. Electrochemical Society 1997.
144:1188-1194.
10. Chung SY, B.J., Chiang YM, Electronically conductive phospho-olivines as lithium
storage electrodes. Nature Materials, 2002. 1:123-128.
11. Mi CH, C.G., Zhao XB, Low-cost, one-step process for synthesis of carbon-coated
LiFePO4 cathode. Materials Letters, 2005. 59:127-130.
12. Mi CH, Z.X., Cao GS, Tu JP, In situ synthesis and properties of carbon-coated
LiFePO4 as li-ion battery cathodes. Journal of the Electrochemical Society 2005.
152.
13. Lu ZG, C.H., Lo MF, Chung CY, Pulsed Laser Deposition and Electrochemical
Characterization of LiFePO4-Ag Composite Thin Films. Advanced Functional
Materials, 2007. 17:3885-3896.
14. Li C, Z.S., Cheng F, Ji W, Chen J, Porous LiFePO4/NiP Composite nanospheres as
the cathode materials in rechargeable lithium-ion batteries. NanoResearch2008.
1:242-248.
15. Croce F, D.E.A., Hassoun J, Deptula A, Olczac T, Scrosati B, A novel concept for
the synthesis of an improved LiFePO4 lithium battery cathode. Electrochemical
and Solid-State Letters, 2002. 5.
16. Liu XM, H.Z., Oh S, Ma PC, Chan PCH, Vedam GK, Kang K, Kim JK, Sol-gel
synthesis of multiwalled carbon nanotube-LiMn2O4 nanocomposites as cathode
materials for Li-ion batteries. . J. Power Sources 2010. 195:4290-4296.
17. Mizushima K, J.P., Wiseman PJ, Goodenough JB, LixCoO2 (0≦x≦1): A new
cathode material for batteries of high energy density. Materials Research Bulletin
1980. 15:783-789

18. Fey GT-K, M.P., Lu C-Z, Cho Y-D, Enhanced electrochemical performance and
thermal stability of La2O3-coated LiCoO2. Electrochimica Acta, 2006.
51:4850-4858.
19. 新エネルギー・産業技術総合開発機構 独. 2007, リチウム二次電池構成
材料開発の状態と課題.
20. 林素琴, 鋰電池材料發展分析. 工研院電子報 2009.
21. 呂學隆, 鋰電池電解液產業在兩岸的發展現況. 工業材料雜誌, 2011. 289.
22. Goodenough JB, K.Y., Challenges for rechargeable Li batteries. . Chemistry of
Materials, 2010. 22:587-603.
23. Zhang, S., A review on electrolyte additives for lithium-ion batteries. J.
Power Sources, 2006. 162(2): p. 1379-1394.
24. Peled, E., The Electrochemical Behavior of Alkali and Alkaline Earth Metals in
Nonaqueous Battery Systems—The Solid Electrolyte Interphase Model. J.
Electrochem. Soc., 1979. 126: p. 2047.
25. Lithium-Ion_Batteries_Solid-Electrolyte_Interphase., P.B. Balbuena and Y. Wang,
Editors. 2004, Imperial College Press.
26. Peled E., G.D., Ardel G., Menachem C., Bar-Tow D. and and E. V, Role of sei in
lithium and lithium ion batteries Mat. Res. Soc. Symp., 1995. 393: p. 209-221.
27. Peled E., G.D.a.P.J., Anode/Electrolyte Interface, in Handbook of Battery
Materials, B.J. O., Editor. 1998.
28. Peled E., M.C., Bar-Tow D. and Melman A., improved graphite anode for
lithium-ion batteries: Chemically bonded solid electrolyte interface and
nanochannel formation J. Electrochem. Soc., 1996. 143(1): p. L4-L7.
29. E, P., in Rechargeable Lithium and Lithium-Ion Batteries, The Electrochem. Soc.
Proceedings Series, ed. by Megahed S., Barnett B. M. and Xie L. (1995), 94-28, 1.
30. S.S. Zhang, M.S.D., K. Xu, J. Allen, T.R. Jow, Understanding solid electrolyte
interface film formation on graphite electrodes. Electrochem. Solid-State Lett.,
2001. 4.
31. S.S. Zhang, K.X., T.R. Jow, EIS study on the formation of solid electrolyte interface
in Li-ion battery Electrochim. Acta 2006. 51: p. 1636.
32. S. Matsuta, T.A., K. Kitaura, Vibrational assignments of lithium alkyl carbonate
and lithium alkoxide in the infrared spectra an ab initio MO study. J. Electrochem. Soc. 147 (2000) 1695, 2000. 147(1695).
33. C. Korepp, H.J.S., T. Fujii, M. Ue, J.O. Besenhard, K.C. Moller,M. Winter,
2-Cyanofuran-A novel vinylene electrolyte additive for PC-based electrolytes in
lithium-ion batteries. J. Power Sources, 2006. 158(578).
34. B. Simon, J.P.B., U.S. Patent 5, 981, Editor. 1997.
35. J. Ufheil, M.C.B., A. W‥ursig, P. Novak, Maleic anhydride as an additive to
γ-butyrolactone solutions for Li-ion batteries. Electrochim. Acta 2005. 50(1733).
36. Y. Ein-Eli, S.R.T., V.R. Koch, The role of SO2 as an additive to organic li-ion battery
electrolytes J. Electrochem. Soc., 1997. 144(1159).
37. Y. Ein-Eli, S.R.T., V.R. Koch, New electrolyte system for Li-ion battery J
Electrochem. Soc. , 1996. 143: p. L195-L197.
38. Ein-Eli, Y., Dithiocarbonic anhydride (CS2) - A new additive in Li-ion battery
electrolytes. J. Electroanal. Chem, 2002. 531(1): p. 95-99.
39. M.W.Wagner, C.L., J.O. Besenhard, Effect of polysulfide-containing electrolyte on
the film formation of the negative electrode J. Power Sources, 1997. 68(2): p.
328-332.
40. J.O. Besenhard, M.W.W., M.Winter, A.D. Jannakoudakis, P.D. Jannakoudakis,E.
Theodoridou, Inorganic film-forming electrolyte additives improving the cycling
behavior of metallic lithium electrodes and the self-discharge of carbon-lithium
electrodes J. Power Sources, 1993. 44: p. 413-420.
41. R. Mogi, M.I., S.K. Jeong, Y. Iriyama, T. Abe, Z. Ogumia, Effects of some organic
additives on lithium deposition in propylene carbonate J. Electrochem.Soc, 2002.
149(12): p. A1578-A1583.
42. G.H. Wrodnigg, T.M.W., J.O. Besenhard, M. Winter, Propylene sulfite as
film-forming electrolyte additive in lithium ion batteries J Electrochem.Commun. 1999. 1(3-4): p. 148-150.
43. G.H. Wrodnigg, J.O.B., M. Winter, Cyclic and acyclic sulfites: New solvents and
electrolyte additives for lithium ion batteries with graphitic anodes? . J. Power
Sources 2001. 97-98: p. 592-594.
44. G.H. Wrodnigg, J.O.B., M. Winter, Ethylene Sulfite as Electrolyte Additive for
Lithium-Ion Cells with Graphitic Anodes J. Electrochem. Soc. , 1999. 146(2): p.
470-472.
45. H. Gan, E.S.T., in U.S. Patent 6,136,477. 2000.
46. Z.X. Shu, R.S.M., J.J. Murray, I.J. Davidson, Use of chloroethylene carbonate as an
electrolyte solvent for a graphite anode in a lithium-ion battery. J. Electrochem.
Soc., 1996. 143(7): p. 2230-2235.
47. Z.X. Shu, R.S.M., J.J. Murray, I.J. Davidson, Use of chloroethylene carbonate as an
electrolyte solvent for a lithium ion battery containing a graphitic anode J.
Electrochem. Soc., 1995. 142(9): p. L161-L162.
48. R. McMillan, H.S., Z.X. Shu, W.D. Wang, Fluoroethylene carbonate electrolyte
and its use in lithium ion batteries with graphite anodes. J. Power Sources, 1999.
81-82(20-26).
49. A. Naji, J.G., P. Willmann, D. Billaud, New halogenated additives to propylene
carbonate-based electrolytes for lithium-ion batteries Electrochim. Acta, 2000.
45(12): p. 1893-1899.
50. Y. Ein-Eli, B.M., D. Aurbach, Y. Carmeli, H. Yamin, S. Luski, The dependence of the
performance of Li-C intercalation anodes for Li-ion secondary batteries on the
electrolyte solution composition Electrochim. Acta 1994. 39(17): p. 2559-2569.
51. J.O. Besenhard, P.C., M.W. Wanger, Mater. Sci. Forum, 1992. 91–93(647).
52. B. Simon, J.P.B., M. Broussely, Electrochemical study of the passivating layer on
lithium intercalated carbon electrodes in nonaqueous solvents J. Power Sources
43–44 (1993) 65, 1993. 43–44(1 -3 pt 1): p. 65-74.
53. G.V. Zhuang, H.Y., B. Blizanac, P.N. Ross Jr., A study of electrochemical reduction
of ethylene and propylene carbonate electrolytes on graphite using ATR-FTIR
spectroscopy Electrochem. Solid-State Lett, 2005. 8(9): p. A441-A445.
54. M.D. Levi , E.M., C. Wang,M. Koltypin,D. Aurbach, The effect of dimethyl
pyrocarbonate on electroanalytical behavior and cycling of graphite electrodes J.
Electrochem.Soc, 2004. 151(6): p. A848-A856.
55. Lee, J.-T., Wu, M.-S., Wang, F.-M., Lin, Y.-W., Bai, M.-Y., Chiang, P.-C.J., Effects of
aromatic esters as propylene carbonate-based electrolyte additives in
lithium-ion batteries Journal of the Electrochemical Society, 2005. 152(9): p.
A1837-A1843.
56. Wang, C., Nakamura, H., Komatsu, H., Yoshio, M., Yoshitake, H., Electrochemical
behaviour of a graphite electrode in propylene carbonate and
1,3-benzodioxol-2-one based electrolyte system J. Power Sources, 1998
. 74(1): p. 142-145.
57. Gong, J.B., Tsumura, T., Nakamura, H., Yoshio, M., Yoshitake, H., Abe, T. , Salt
Lake City, UT, October 20-24 202nd ECS Meeting Abstracts, 2002. (Abstract No.
200)
58. Xu, K., Zhang, S., Jow, T.R., Xu, W., Angell, C.A, LiBOB as salt for lithium-ion
batteries. A possible solution for high temperature operation Electrochemical
and Solid-State Letters, 2002. 5(1): p. A26-A29.
59. Xu, K., Zhang, S., Poese, B.A., Jow, T.R, Lithium bis(oxalato)borate stabilizes
graphite anode in propylene carbonate Electrochemical and Solid-State Letters,
2002. 5(11): p. A259-A262.
60. Zhang, S.S., Xu, K., Jow, T.R., Enhanced performance of natural graphite in Li-ion
battery by oxalatoborate coating J. Power Sources, 2004. 129(2): p.
275-279.
61. Xu, K., Lee, U., Zhang, S., Wood, M., Jow, T.R, Chemical analysis of
graphite/electrolyte interface formed in LiBOB-based electrolytes
Electrochemical and Solid-State Letters, 2003. 6(7): p. A144-A148.
62. K. Takechi, A.K., T. Shiga, in U.S. Patent 6,077,628. 2000.
63. K. Takechi, T.S., in U.S. Patent 6,235,431. 2001.
64. Amine, K., Improved lithium manganese oxide spinel/graphite Li-in cells for
high-power applications. Journal of Power Sources, 2004. 129(1): p. 14-19.
65. O. Hiroi, K.H., Y. Yoshida, S. Yoshioka, H. Shiota, J. Aragane, S.Aihara, D. Takemura
, T. Nishimura, M. Kise, H. Urushibata, H. Adachi. 2001.
66. Morita, M., Aoki, S., Matsuda, Y., ac imepedance behaviour of lithium electrode
in organic electrolyte solutions containing additives. Electrochimica Acta, 1992.
37(1): p. 119-123.
67. Ishikawa, M., Kawasaki, H., Yoshimoto, N., Morita, M., Pretreatment of Li metal
anode with electrolyte additive for enhancing Li cycleability. J. Power
Sources, 2005. 146(1-2): p. 199-203.
68. Adachi, M., Tanaka, K., Sekai, K., Aromatic compounds as redox shuttle additives
for 4 V class secondary lithium batteries Journal of the Electrochemical Society,
1999. 146(4): p. 1256-1261.
69. G. Dantsin, K.J., S.V. Ivanov,W.J. Casteel, K. Amine, J. Liu, and Z.C. A.N. Jansen. in
208th ECS Meeting Abstracts. 2005. Los Angeles, CA, October 16-21.
70. Feng, X.M., Ai, X.P., Yang, H.X., Possible use of methylbenzenes as electrolyte
additives for improving the overcharge tolerances of Li-ion batteries. J.
Applied Electrochemistry, 2004. 34(12): p. 1199-1203.
71. Lee, H., Lee, J.H., Ahn, S., Kim, H.-J., Cho, J.-J., Co-use of cyclohexyl benzene and
biphenyl for overcharge protection of lithium-ion batteries Electrochemical and
Solid-State Letters, 2006. 9(6): p. A307-A310.
72. Abe, K., Ushigoe, Y., Yoshitake, H., Yoshio, M., Functional electrolytes: Novel type
additives for cathode materials, providing high cycleability performance Journal
of Power Sources, 2006. 153(2): p. 328-335.
73. Xu, K., Lee, U., Zhang, S.S., Jow, T.R., 208th ECS Meeting Abstracts, 2005. Los
Angeles, CA, October 16-21 (Abstract No. 219).
74. Shui Zhang, S., An unique lithium salt for the improved electrolyte of Li-ion
battery Electrochemistry Communications, 2006. 8(9): p. 1423-1428.
75. Amine, K., Liu, J., Belharouak, I., Kang, S.-H., Bloom, I., Vissers, D., Henriksen,
Advanced cathode materials for high-power applications J. Power
Sources, 2005. 146(1-2): p. 111-115
76. Granzow, A., Flame retardation by phosphorus compounds Accounts of Chemical
Research, 1978. 11(5): p. 177-183.
77. Kashiwagi, T., Gilman, J.W., Butler, K.M., Harris, R.H., Shields, J.R., Asano, A,
Flame retardant mechanism of silica gel/silica Fire and Materials, 2000. 24(6): p.
277-289.
78. Wang, X., Yasukuwa, E., Kasuya, S, Nonflammable Trimethyl Phosphate
Solvent-Containing Electrolytes for Lithium-Ion Batteries - I. Fundamental
Properties Journal of the Electrochemical Society, 2001. 148(10): p.
A1058-A1065.
79. Xu, K., Ding, M.S., Zhang, S., Allen, J.L., Jow, T.R, An attempt to formulate
nonflammable lithium ion electrolytes with alkyl phosphates and phosphazenes
Journal of the Electrochemical Society, 2002. 149(5): p. A622-A626.
80. Wang, X., Yasukawa, E., Kasuya, S., Nonflammable Trimethyl Phosphate
Solvent-Containing Electrolytes for Lithium-Ion Batteries - II. The Use of an
Amorphous Carbon Anode Journal of the Electrochemical Society, 2001. 148(10):
p. A1066-A1071.
81. Hyung, Y.E., Vissers, D.R., Amine, K, Flame-retardant additives for lithium-ion
batteries Journal of Power Sources, 2003. 119-121: p. 383-387.
82. Wang, Q., Sun, J., Yao, X., Chen, C, 4-isopropyl phenyl diphenyl phosphate as
flame-retardant additive for lithium-ion battery electrolyte Electrochemical and
Solid-State Letters, 2005. 8(9): p. A467-A470.
83. Ota, H., Kominato, A., Chun, W.-J., Yasukawa, E., Kasuya, S, Effect of cyclic
phosphate additive in non-flammable electrolyte Journal of Power Sources, 2003
. 119-121: p. 393-398.
84. Zhang, S.S., Xu, K., Jow, T.R., A thermal stabilizer for LiPF6-based electrolytes of
Li-ion cells Electrochemical and Solid-State Letters, 2002. 5(9): p. A206-A208.
85. Yao, X.L., Xie, S., Chen, C.H., Wang, Q.S., Sun, J.H., Li, Y.L., Lu, S.X, Comparative
study of trimethyl phosphite and trimethyl phosphate as electrolyte additives in
lithium ion batteries Journal of Power Sources, 2005. 144(1): p. 170-175.
86. Arai, J., A novel non-flammable electrolyte containing methyl nonafluorobutyl
ether for lithium secondary batteries Journal of Applied Electrochemistry, 2002.
32(10): p. 1071-1079.
87. Arai, J., Nonflammable methyl nonafluorobutyl ether for electrolyte used in
lithium secondary batteries Journal of the Electrochemical Society, 2003. 150(2):
p. A219-A228.
88. Arai, J., No-flash-point electrolytes applied to amorphous carbon/Li1+xMn2O4
cells for EV use Journal of Power Sources, 2003. 119-121: p. 388-392

89. Lee, H.S., Yang, X.Q., McBreen, J., Choi, L.S., Okamoto, Y, The synthesis of a new
family of anion receptors and the studies of their effect on ion pair dissociation
and conductivity of lithium salts in nonaqueous solutions. Journal of the
Electrochemical Society, 1996. 143(12): p. 3825-3829.
90. Zhang, S.S., Angell, C.A, A novel electrolyte solvent for rechargeable lithium and
lithium-ion batteries Journal of the Electrochemical Society, 1996. 143(12): p.
4047-4053.
91. Kanamura, K., Umegaki, T., Shiraishi, S., Ohashi, M., Takehara, Z.-I,
Electrochemical behavior of Al current collector of rechargeable lithium batteries
in propylene carbonate with LiCF3SO3, Li(CF3SO2)2N, or Li(c4F9SO2)(CF3SO2)N
Journal of the Electrochemical Society, 2002. 149(2): p. A185-A194.
92. Krause, L.J., Lamanna, W., Summerfield, J., Engle, M., Korba, G., Loch, R.,
Atanasoski, R., Corrosion of aluminum at high voltages in non-aqueous
electrolytes containing perfluoroalkylsulfonyl imides; new lithium salts for
lithium-ion cells. Journal of Power Sources, 1997. 68(2): p. 320-325.
93. Zhang, S.S., Jow, T.R, Aluminum corrosion in electrolyte of Li-ion battery Journal
of Power Sources, 2002. 109(2): p. 458-464.
94. S. Tsujioka, H.T., M. Takahashi, H. Sugimoto, M.Koide, U.S. Patent, Editor. 2002.
95. S. Tsujioka, H.T., M. Takahashi, H. Sugimoto, M.Koide, in U.S. Patent. 2002.
96. Film, F.P., in Japan Patent. 1997.
97. Wu, K., Zhang, Y , Zeng, Y, Yang, J, Safety performance of lithium-ion battery.
Progress in Chemistry 2011. 23(2-3): p. 401-409.
98. Zhang, Z., Fouchard, D., Rea, J.R, Differential scanning calorimetry material
studies: Implications for the safety of lithium-ion cells Journal of Power Sources
, 1998. 70(1): p. 16-20.
99. Maleki, H., Deng, G., Anani, A., Howard, J., Thermal stability studies of Li-ion
cells and components. Journal of the Electrochemical Society, 1999. 146(9): p.
3224-3229.
100. Andersson, A.M., Herstedt, M., Bishop, A.G., Edstrom, K., The influence of
lithium salt on the interfacial reactions controlling the thermal stability of
graphite anodes Electrochimica Acta, 2002. 47(12): p. 1885-1898.
101. Belharouak, I., Lu, W., Liu, J., Vissers, D., Amine, K., Thermal behavior of
delithiated Li(Ni0.8Co0.15Al0.05)O2 and Li1.1(Ni1/3Co1/3Mn1/3)0.9O2
powders Journal of Power Sources, 2007. 174(2): p. 905-909.
102. Veluchamy, A., et al., Thermal analysis of LixCoO2 cathode material of lithium
ion battery. Journal of Power Sources, 2009. 189(1): p. 855-858.
103. MacNeil, D.D. and J.R. Dahn, The Reactions of Li[sub 0.5]CoO[sub 2] with
Nonaqueous Solvents at Elevated Temperatures. Journal of The Electrochemical
Society, 2002. 149(7): p. A912.
104. Tobishima, S.-I., Yamaki, J.-I, A consideration of lithium cell safety Journal of
Power Sources, 1999. 81-82: p. 882-886.
105. Leising, R.A., Palazzo, M.J., Takeuchi, E.S., Takeuchi, K.J., A study of the
overcharge reaction of lithium-ion batteries Journal of Power Sources, 2001
. 97-98: p. 681-683.
106. J.K. Feng, X.P.A., Y.L. Cao and H.X. Yang, Polytriphenylamine used as an
electroactive separator material for overcharge protection of rechargeable
lithium battery. Journal of Power Sources, 2006. 161(1): p. 545-549
107. Ai, X.P., Cao, Y.L., Yang, H.X, Electrochemistry, 2010. 16(1): p. 6-10.
108. Feng, X.M., Ai, X.P., Yang, H.X., A positive-temperature-coefficient electrode wit
h thermal cut-off mechanism for use in rechargeable lithium batteries
Electrochemistry Communications, 2004. 6(10): p. 1021-1024.
109. Ha, H., et al., Enhanced electrochemical and thermal stability of
surface-modified LiCoO2 cathode by CeO2 coating. Electrochimica Acta, 2006.
51(16): p. 3297-3302.
110. S. H. Kim, K.B.S., K. R. Han and C.S. Kim, Surface modification of Li(Co1/3
Mn1/3Ni 1/3)O2 fine powders using aqueous Al2O 3 sol. Materials Science
Forum 2007. 544-545: p. 857-860
111. H.J. Kweon, J.J.P., J.W. Seo, G.B. Kim, B.H. Jung, and H.S. Lim, Effects of metal
oxide coatings on the thermal stability and electrical performance of LiCoO2 in a
Li-ion cell. J. Power Sources, 2004. 126: p. 156–162.
112. Wang, F.-M., et al., Self-polymerized membrane derivative of branched additive
for internal short protection of high safety lithium ion battery. Journal of
Membrane Science, 2011. 368(1-2): p. 165-170.
113. Yang, M.H., Practical Outlook of Technology and Product Developments for Li-ion
Battery. 工業材料雜誌, 2011. 295.
114. Norman Edward Searle, W., Del, SYNTHESIS OF N-ARYL-MALEIlUDES. 1946.
115. Ye, Y.S., et al., New proton conducting membranes with high retention of protic
ionic liquids. Journal of Materials Chemistry, 2011. 21(8): p. 2723.
116. Ranu, B.C. and S. Banerjee, Ionic Liquid as Catalyst and ReactionMedium. The
Dramatic Influence of aTask-Specific Ionic Liquid, [bmIm]OH, inMichael Addition
of Active MethyleneCompounds to Conjugated Ketones,Carboxylic Esters, and
Nitriles. American Chemical Society, 2005.7(14): p. 3049-3052
117. Yang, L., et al., Highly efficient aza-Michael reactions of aromatic amines and
N-heterocycles catalyzed by a basic ionic liquid under solvent-free conditions.
Tetrahedron Letters, 2006. 47(44): p. 7723-7726.
118. Stevens, M.P., " Polymer Chemistry " Oxford University Press:NewYork, 1999,
301.
119. Wang, F.-M., et al., Novel SEI formation of maleimide-based additives and its
improvement of capability and cyclicability in lithium ion batteries.
Electrochimica Acta, 2009. 54(12): p. 3344-3351.
120. Verma, P., P. Maire, and P. Novák, A review of the features and analyses of the
solid electrolyte interphase in Li-ion batteries. Electrochimica Acta, 2010. 55(22):
p. 6332-6341.
121. 陳昱光, 鋰離子電池陰極材料熱穩定性探討. 2008.

無法下載圖示 全文公開日期 2016/08/01 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE