簡易檢索 / 詳目顯示

研究生: 布法立
Tomy - Abuzairi
論文名稱: Synthesis of Tungsten Oxide Thin Film and Nanowires For Highly Improved Electrochromic Smart Windows
Synthesis of Tungsten Oxide Thin Film and Nanowires For Highly Improved Electrochromic Smart Windows
指導教授: 黃柏仁
Bohr-Ran Huang
口試委員: 張立
Chang Li
周賢鎧
Shyankay Jou
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 75
中文關鍵詞: Electrochromicsmart windowstungsten oxide thin filmstungsten oxide nanowiresheat-treatment technique.
外文關鍵詞: Electrochromic, smart windows, tungsten oxide thin films, tungsten oxide nanowires, heat-treatment technique.
相關次數: 點閱:355下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

Tungsten oxide, has many interesting optical, electrical, structural, and chemical properties, are an ideal choice material for electrochromic smart windows devices. In this study, tungsten oxide thin films were prepared by the thermal oxidization on Tungsten/ITO/glass substrates at different heat-treatment temperatures. The optimum heat-treatment temperature, corresponding to the maximum electrochromic performance, was achieved by 550 oC. X-ray diffraction (XRD) analysis indicates that a tetragonal WO3 phase formed at temperatures below 550 oC and the phase transformed to monoclinic W18O49 after the temperature was raised to 650 oC. The electrical properties analysis confirmed that the highest electrical conductivity show the superior electrochromic performance, with the maximum coloration efficiency value of 60.4 cm2/C. The tetragonal WO3 films, with heat-treatment temperature 550 oC and 450 oC, exhibit good electrochromic properties such as a high diffusion coefficient (1.7x10-11), fast electrochromic response time (coloration time 1.6 s, bleaching time 1.2 s), and high coloration efficiency (60.4 cm2/C).

Furthermore, tungsten oxide nanowires were prepared on a tungsten film (W)/ITO-glass substrate at 500 oC for electrochromic devices using the heat-treatment technique. The electrical properties analysis confirmed that the highest electrical conductivity achieve the superior electrochromic performance with the maximum coloration efficiency value. The tungsten oxide nanowires shows excellent electrochromic properties such as a higher diffusion coefficient (2x10-9), faster electrochromic response time (coloration time 1.7 s, bleaching time 1.1 s), and higher coloration efficiency (67.41 cm2/C) than other tungsten oxide films without nanowires. Therefore, the tungsten oxides nanowire prepared by heat-treatment technique, corresponding to the maximum electrochromic performance, would be further adopted in the commercial application of smart windows.


Tungsten oxide, has many interesting optical, electrical, structural, and chemical properties, are an ideal choice material for electrochromic smart windows devices. In this study, tungsten oxide thin films were prepared by the thermal oxidization on Tungsten/ITO/glass substrates at different heat-treatment temperatures. The optimum heat-treatment temperature, corresponding to the maximum electrochromic performance, was achieved by 550 oC. X-ray diffraction (XRD) analysis indicates that a tetragonal WO3 phase formed at temperatures below 550 oC and the phase transformed to monoclinic W18O49 after the temperature was raised to 650 oC. The electrical properties analysis confirmed that the highest electrical conductivity show the superior electrochromic performance, with the maximum coloration efficiency value of 60.4 cm2/C. The tetragonal WO3 films, with heat-treatment temperature 550 oC and 450 oC, exhibit good electrochromic properties such as a high diffusion coefficient (1.7x10-11), fast electrochromic response time (coloration time 1.6 s, bleaching time 1.2 s), and high coloration efficiency (60.4 cm2/C).

Furthermore, tungsten oxide nanowires were prepared on a tungsten film (W)/ITO-glass substrate at 500 oC for electrochromic devices using the heat-treatment technique. The electrical properties analysis confirmed that the highest electrical conductivity achieve the superior electrochromic performance with the maximum coloration efficiency value. The tungsten oxide nanowires shows excellent electrochromic properties such as a higher diffusion coefficient (2x10-9), faster electrochromic response time (coloration time 1.7 s, bleaching time 1.1 s), and higher coloration efficiency (67.41 cm2/C) than other tungsten oxide films without nanowires. Therefore, the tungsten oxides nanowire prepared by heat-treatment technique, corresponding to the maximum electrochromic performance, would be further adopted in the commercial application of smart windows.

Abstract ..............I Acknowledgement.......III Contents...............IV List of Figures.......VII List of Tables...........X Chapter 1 Introduction…………………………………………………1 1.1 Background .....……………………………………………………………………1 1.2 Motivation and aims……………….………………………………………………2 1.3 Thesis Organization………………………………………………………………..5 Chapter 2 Literature Review …………………………………………..7 2.1 Introduction of Tungsten Oxide Materials .............................7 2.2 Electrochromic Concept ..........9 2.2.1 Chromism, Electrochromism and Electrochromic Materials ......9 2.2.2 Electrochromic Properties ..........11 2.2.3 Electrochromic Devices ...........13 2.3 Tungsten Oxide as Electrochromic Devices ........17 Chapter 3 Experimental Procedure…………………………………..19 3.1 Synthesis of Tungsten Oxide Film................................20 3.1.1 Cleaning of the Substrates ................................20 3.1.2 Tungsten Thin Film Deposition .........................21 3.1.3 Tungsten Oxide Film by Heat-Treatment Technique….........23 3.1.4 Tungsten Oxide Nanowires by Two-Step Heat-Treatment Technique ..23 3.2 Characterization ...................................24 3.2.1 Raman spectroscopy ..................24 3.2.2 X-ray diffraction (XRD) ..................25 3.2.3 Field Emission Scanning Electron Microscopy (FESEM) ...26 3.2.4 Current-Voltage (I-V) Measurement System ...............26 3.2.5 Optical Transmittance Spectra Measurement System ........27 3.2.6 Cyclic Voltametry (CV) ......................................28 3.2.7 Cronoamperometry (CA) .....................................31 3.2.8 Cronocoulometry (CC) ................................32 Chapter 4 Effect of Heat-Treatment on the Properties of Tungsten Oxide Thermally Oxidized Films for Electrochromic Smart Window.................34 4.1 Experiment Details.................34 4.2 Effect of Heat-Treatment on the Structural Properties………..........35 4.3 Effect of Heat-Treatment on the Electrical Property…............39 4.4 Effect of Heat-Treatment on the Electrochromic Properties........40 4.5 Effect of Heat-Treatment on the Optical Transmittance Studies …..45 4.6 Conclusion...............................................48 Chapter 5 Tungsten Oxide Nanowires for Highly Improved Electrochromic Smart Windows………......................................……...49 5.1 Experimental Details.............49 5.2 Structural Properties Analysis .....................50 5.3 Electrical Property Analysis ...................................54 5.4 Electrochromic Properties Analysis ...............................55 5.5Optical Transmittance Studies................59 5.6 Conclusion....................................................62 Chapter 6 Conclusion and Future Works……………………………63 6.1 Conclusion ...........................63 6.2 Future Works ..........................................63 References...……………………………….……………………………65

Chapter 1
[1] H. Chhina, S. Campbell, and O. Kesler, J. Electrochem. Soc., 154 (2007) B533.
[2] A. Ponzonia, V. Russo, A. Bailini, C. S. Casari, M. Ferroni, A. Li Bassi, A. Migliori, V. Morandi, L. Ortolani, G. Sberveglieri, and C. E. Bottani, Sens. Actuators B, 153 (2011) 340.
[3] J. Zhou, L. Gong, S. Z. Deng, J. Chen, J. C. She, and N. S. Xu, Applied Physics Letters, 87 (2005) 223108(1).
[4] P. R. Somani and S. Radhakrish, Chemistry and Physics, 77 (2002) 117.
[5] S. Balaji, Y. Djaoued, A. S. Albert, R. Z. Ferguson, and R. Bruning, Chem. Mater., 21 (2009) 1381.
[6] M. Z. Najdoski and T. Todorovski, Materials Chemistry and Physics, 104 (2007) 483.
[7] C. G. Granqvist, Handbook of Inorganic Electrochromic Materials. 1995, New York: Elsevier.
[8] P. M. S. Monk, R. J. Mortimer, and D. R. Rosseinsky, Electrochromism and Electrochromic Devices. 2007, United Kingdom: Cambridge University Press.
[9] K. Bange, Sol. Energy Mater. Sol. Cells, 58 (1999) 1.
[10] C. G. Granqvist, Sol. Energy Mater. Sol. Cells, 60 (2000) 201.
[11] C. G. Granqvist, A. Azens, A. L. Kullman, G. A. Niklasson, D. Ronnow, M. S. Mattsson, M. Veszelei, and G. Vaivars, Solar Energy, 63 (1998) 199.
[12] R. Baetens, B. P. Jelle, and A. Gustavsen, Sol. Energy Mater. Sol. Cells, 94 (2010) 87.
[13] A. Azens and C. Granqvist, J. Sol. State Elec. Chem., 94 (2003) 64.
[14] Granqvist, C. G. Sol. Energy Mater. Sol. Cells., 92 (2008) 203.
[15] M. Deepa, A. G. Joshi, A. K. Srivastava, S. M. Shivaprasad, and S. A. Agnihotry, J. Electrochem. Soc., 153 (2006) C365.
[16] Y. Suna, C. J. Murphy, K. R. Reyes-Gil, E. A. Reyes-Garcia, J. M. Thornton, N. A. Morris, and D. Raftery, International Journal of Hydrogen Energy, 34 (2009) 8476.
[17] M. Giannoulia and G. Leftheriotis, Sol. Energy Mater. Sol. Cells, 95 (2011) 1932.
[18] C. Lemire and D. B. B. Lollman, A. Al Mohammad, E. Gilet, and K. Aguir, Sens. Actuators B, 84 (2002) 43.
[19] K. M. Karuppasamy and A. Subrahmanyam, Sol. Energy Mater. Sol. Cells, 92 (2008) 1322.
[20] M. Filipescu, S. Orlando, V. Russo, A. Lamperti, A. Purice, A. Moldovan, and M. Dinescu, Appl. Surf. Sci., 253 (2007) 8258.
[21] R. Sohal, C. Walczyka, P. Zaumseila, D. Wolanskya, A. Foxa, B. Tillacka, H. J. Müssiga, and T. Schroeder, Thin Solid Films, 517 (2009) 4534.
[22] S. Balaji, Y. Djaouned, A. S. Albert, R. Brüning, N. Beaudoin, and J. Robichaud, J. Mater. Chem., 21 (2011) 3940.
[23] X. Sun, Z. Liu, and H. Cao, J. Alloy. Compd., 504S (2010) S418.
[24] X. Sun, H. Cao, Z. Liu, and J. Li, Appl. Surf. Sci., 255 (2009) 8629.
[25] D. Gogova, L. K. Thomas, and B. Camin, Thin Solid Films, 517 (2009) 3326.
[26] E. Ozkan, S. H. Lee, C. E. Tracy, F. Z. Tepehan, J. R. Pitts, and S. K. Deb, Solid State Ionics, 149 (2002) 139.
[27] M. Deepa, A. K. Srivastava, K. N. Sood, and S. A. Agnihotry, Nanotechnology, 17 (2006) 2625.
[28] S. J. Yoo, J. W. Lim, Y. E. Sung, Y. H. Jung, H. G. Choi, and D. K. Kim, Applied Physics Letters, 90 (2007) 173126 (1).
[29] S. J. Yoo, Y. H. Jung, J. W. Lim, H. G. Choi, D. K. Kim, and Y. E. Sung, Sol. Energy Mater. Sol. Cells, 92 (2008) 179.
[30] G. Gu, B. Zeng, W. Q. Han, S. Roth, and J. Liu, Nano Letters, 2 (2002) 849.
[31] C. Klinke, J. B. Hannon, L. Gignac, K. Reuter, and P. Avouris, J. Phys. Chem. B, 109 (2005) 17787.
[32] K. Hong, M. Xie, and H. Wu, Nanotechnology, 17 (2006) 4830.
[33] Y. Baek and K. Yong, J. Phys. Chem. C, 111 (2007) 1213.
[34] Y. Kojima, K. Kasuya, K. Nagato, T. Hamaguchi, and M. Nakao, J. Vac. Sci. Technol. B, 26 (2008) 1942.
[35] J. H. Ha, P. Muralidharana, and D. K. Kim, J. of Alloys and Compounds, 475 (2009) 446.
[36] H. Zhang, T. T. Xu, M. Tang, T. H. Her, and S. Y. Li, J. vac. Sci. Technol. B, 28 (2010) 310.
[37] B. R. Huang, J. C. Lin, T. C. Lin, D. Mangindaan, and M. J. Wang, J. Nanosci. Nanotechnol., 11 (2011) 7693.

Chapter 2
[1] H. Chhina, S. Campbell, and O. Kesler, J. Electrochem. Soc., 154 (2007) B533.
[2] A. Ponzonia, V. Russo, A. Bailini, C. S. Casari, M. Ferroni, A. Li Bassi, A. Migliori, V. Morandi, L. Ortolani, G. Sberveglieri, and C. E. Bottani, Sens. Actuators B, 153 (2011) 340.
[3] J. Zhou, L. Gong, S. Z. Deng, J. Chen, J. C. She, and N. S. Xu, Applied Physics Letters, 87 (2005) 223108(1).
[4] P. R. Somani and S. RRadhakrishnan, Chemistry and Physics, 77 (2002) 117.
[5] S. Balaji, Y. Djaoued, A. S. Albert, R. Z. Ferguson, and R. Bruning, Chem. Mater., 21 (2009) 1381.
[6] M. Z. Najdoski and T. Todorovski., Materials Chemistry and Physics, 104 (2007) 483.
[7] C. G. Granqvist, Handbook of Inorganic Electrochromic Materials. 1995, New York: Elsevier.
[8] C. G. Granqvist, Sol. Energy Mater. Sol. Cells, 60 (2000) 201.
[9] A. Souza-Filho, V. Freire, J. Sasaki, J. Mendes-Filho, J. Juliao, and U. Gomes, J. Raman Spect., 31 (2000) 451.
[10] Z. Xu, J. F. Vetelino, R. Lec, and D. C. Parker, J. Vac. Sci. Technol. A, 8 (1990) 3634.
[11] H. Bouas-Laurent and H. Durr, Pure Appl. Chem., 73 (2001) 639.
[12] P. M. S. Monk, S. P. Akhtar, J. Boutevin, and J. R. Duffield, , Electrochimica Acta, 46 (2001) 2091.
[13] G. A. Niklasson, L. Berggren, A. Jonsson, R. Ahuja, N. V. Skorodumova, J. Backholm, and M. Strømme, Solar Energy Materials & Solar Cells, 90 (2006) 385.
[14] N. A. O'brien, J. Gordon, H. Mathew, and B. P. Hichwa, Thin solid films, 345 (1999) 312.
[15] P. M. S. Monk, R. J. Mortimer, and D. R. Rosseinsky, Electrochromism and Electrochromic Devices. 2007, United Kingdom: Cambridge University Press.
[16] Wang, J., Analytical electrochemistry, ed. 3rd. 2006, New York: Wiley.
[17] C. G. Granqvist, Sol. Energy Mater. Sol. Cells., 92 (2008) 203.
[18] C. G. Granqvist, A. Azens, A. L. Kullman, G. A. Niklasson, D. Ronnow, M. S. Mattsson, M. Veszelei, and G. Vaivars, Solar Energy, 63 (1998) 199.
[19] K. Bange, Sol. Energy Mater. Sol. Cells., 58 (1999) 1.

Chapter 3
[1] S. Jeon and K. Yong, J. Mater. Res. 23 (2008) 1320.
[2] G. Cao and Y. Wang, Nanostructures and nanomaterials: synthesis, properties, and application. Imperial College Press, 2004.
[3] B. D. Cullity, Elements of X-Ray Diffraction. Addison-Wesley Pub. Co, 1956.
[4] J. I. Goldstein, D. E. Newbury, P. Echlin, D. C. Joy, A. D. Romig, C. E. Lyman, C. Fiori, and E. Lifshin, Scanning Electron Microscopy and X-ray Microanalysis. 3th ed. Plenum Press, 2003.
[5] P. M. S. Monk, R. J. Mortimer, and D. R. Rosseinsky, Electrochromism and Electrochromic Devices. United Kingdom: Cambridge University Press, 2007.
[6] A. W. Bott and W. R. Heineman, Current Separations. 20 (2004) 121.

Chapter 4
[1] G. S. Chen, L. C. Yang, H. S. Tian, C. S. Hsu, Thin Solid Films 484 (2005) 83.
[2] W. Wua, Q. Yua, J. Lianc, J. Baob, Z. Liub and S. S. Pei, J. Crystal Growth 312 (2010) 3147.
[3] A. H. Jayatissa, S. T. Cheng, T. Gupta, Mater. Sci. Eng. B 109 (2004) 269.
[4] S. C. Moulzolf, L. J. LeGore, R. J. Lad, Thin Solid Films 400 (2001) 56.
[5] M. Deepa, A. K. Srivastava , and S. A. Agnihotry, Acta Materialia 54 (2006) 4583.
[6] M. Ohring, Material Science of Thin Films: Deposition and Structure, Academic Press, USA 2002.
[7] M. J. Alam and D. C. Cameron, Thin solid films 420-421 (2002) 76.
[8] M. Deepa, R. Sharma, A. Basu, and S.A. Agnihotry, Electrochim Acta 50 (2005) 3545.
[9] Wang J, Analytical electrochemistry, 3rd edn. New York: Wiley, 2006.
[10] B. Gavanier, N. S. Butt, M. Hutchins, V. Mercier, A. J. Topping and J. R. Owen, Electrochim. Acta 44 (1999) 3251.
[11] C. Brigouleix, P. Toparta, E. Brunetona, F. Sabarya, G. Nouhauta and G. Campet, Electrochim. Acta 46 (2001) 1931.
[12] Y. Zhang, J. Yuan, J. Le, L. Song, and X. Hu, Sol. Energy Mater. Sol. Cells., 93 (2009) 1338.

Chapter 5
[1] G. S. Chen, L. C. Yang, H. S. Tian, and C. S. Hsu, Thin solid films, 484 (2005) 83.
[2] A. H. Jayatissa, S. T. Cheng, and T. Gupta, Mater. Sci. Eng. B, 109 (2004) 269.
[3] S. Jeon and K. Yong, J. Mater. Res., 23 (2008) 1320.
[4] M. Ohring, Material Science of Thin Films: Deposition and Structure. USA: Academic Press, 2002.
[5] C. C. Liao, F. R. Chen, J. J. Kai, Sol. Energy Mater. Sol. Cells, 91 (2007) 1258.
[6] M. J. Alam and D. C. Cameron, Thin solid films, 420-421 (2002) 76.
[7] M. Deepa, R. Sharma, A. Basu, and S. A. Agnihotry, Electrochimica Acta, 50 (2005) 3545.
[8] J. Wang, Analytical electrochemistry. New York: Wiley, 2006.
[9] B. Gavanier, N. S. Butt, M. Hutchins, V. Mercier, A. J. Topping, and J. R. Owen, Electrochimica Acta, 44 (1999) 3251.
[10] C. Brigouleix, P. Toparta, E. Brunetona, F. Sabarya, G. Nouhauta, and G. Campet, Electrochimica Acta, 46 (2001) 1931.
[11] S. J. Yoo, J. W. Lim, Y. E. Sung, Y. H. Jung, H. G. Choi, and D. K. Kim, Applied Physics Letters, 90 (2007) 173126 (1).
[12] H. S. Shim, J. W. Kim, Y. E. Sung, and W. B. Kim, Sol. Energy Mater. Sol. Cells., 93 (2009) 2062.

QR CODE