簡易檢索 / 詳目顯示

研究生: 王宇
Yu Wang
論文名稱: 微型電網三相三缐逆變器智慧型控制設計
Intelligent Control Design for 3Φ3W Inverter in Microgrid
指導教授: 魏榮宗
Rong-Jong Wai
口試委員: 魏榮宗
Rong-Jong Wai
郭政謙
Cheng-Chien Kuo
潘晴財
Ching-Tsai Pan
林法正
Faa-Jen Lin
李政道
Jeng-Dao Lee
張永瑞
Yung-Ruei Chang
段柔勇
Rou-Yong Duan
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 123
中文關鍵詞: 微型電網智慧逆變器全域滑動模式控制反步控制非因果問題LCL濾波器自我調整模糊類神經網路功率解耦虛擬同步電機
外文關鍵詞: Microgrid, Smart inverter, Total sliding-mode control, Backstepping design, Non-causal problem, LCL filter, Adaptive fuzzy neural network, Power decoupling, Virtual synchronous generator
相關次數: 點閱:341下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在全球能源危機與環境污染的背景下,分散式發電(Distributed Generation)因其對環境友好的特性,成為解決環境問題的選項之一。另一方面,微型電網(Micro Grid)作為利用可再生能源的一種切實可行方案,可以連接分散式發電與配電網,並進一步降低分散式發電對電網的影響。由於分散式發電單元多是以電力電子轉換器為介面,因此微型電網智慧逆變器(Smart Inverter)的優化表現尤為重要。
    本文首先針對LCL型併網逆變器在弱電網下的穩定性問題,提出離散型的反步滑動模式控制(Discrete-Time Backstepping Sliding-Mode Control)方法。首先,本文對離散時間下的三階動態系統模型進行推導,進而設計離散型反步控制級聯滑動模式控制器,並進一步對其進行李雅普諾夫穩定(Lyapunov Stability)證明。同時,利用時變映射關係對系統的狀態方程進行轉換,克服離散型反步控制設計中的非因果問題。此外,利用對高階LCL型逆變器的遞迴子系統進行設計,可以通過逐步虛擬控制(Virtual Control)的設計來保證系統的漸近穩定性,因此系統不需要額外的有源阻尼(Active Damping)控制算法設計。並且提出的控制演算法可以結合反步控制與滑動模式控制的各自優點,因此LCL型併網逆變器系統在有電網阻抗以及電網阻抗改變的情況下,仍能維持系統穩定以及實現較好的控制效果。
    再者,為了解決微型電網中的低慣性問題以及智慧逆變器的實虛功率耦合問題,本文更提出一種基於虛擬同步電機(Virtual Synchronous Generator)的線上訓練自我調整模糊類神經網路(Fuzzy Neural Network)功率解耦演算法。首先,本文針對微型電網之虛擬同步電機的功率耦合行為進行分析,並對提出演算法的系統動態模型進行推導。另外,為了實現功率解耦控制強健性以及動態特性快的特點,本文設計全域滑動模式控制器。同時,進一步通過自我調整模糊神經網路控制器來繼承全域滑動模式控制律,並解決全域滑動模式控制依賴具體系統資訊的缺點。藉由投影演算法(Project Algorithm)與李雅普諾夫穩定性定理,提出神經網路參數的自我調整調節律,以保證神經網路的收斂以及實現系統的完全功率解耦。本文所提出各式演算法的有效性和優越性將通過數值模擬和實驗驗證。


    In the background of the global environmental pollution and energy crisis, distributed generation (DG) is an attractive option for solving environmental issues because of its environmental friendly feature. Moreover, a microgrid (MG) is a practical solution to utilize renewable and sustainable energy sources, and as a connection to the distribution network for reducing the impact of DGs to the power grid. In addition, most of DGs are employed through the power electronic interface, and thus the performance of smart inverters in the MG is critical.
    A discrete-time backstepping sliding-mode control (DTBSMC) method for an LCL-type grid-connected inverter is further designed in this dissertation. Firstly, the dynamic model of a discrete-time three-order system is derived, and a discrete-time backstepping control method cascading with the sliding-mode control theory is designed via Lyapunov stability verification. Moreover, the system state equation is transformed into a special form by using a time-varying mapping for overcoming the difficulty of a non-causal problem. Besides, through the recursively subsystem design for the high-order LCL-type inverter, the asymptotic system stability can be ensured by step-by-step virtual control designs without the requirement of additional active damping (AD) method design. In addition, the proposed method can combine both the advantages of the backstepping control method and sliding-mode control theory. Therefore, the LCL-type grid-connected inverter system can maintain the system stability and have strong robustness under the condition of a power grid with varied grid impedances.
    In order to address the low inertia problem and the power coupling between the active power and the reactive power, this dissertation further proposes an online-trained adaptive fuzzy-neural-network power decoupling (AFNNPD) strategy for a virtual synchronous generator (VSG) control in the MG. Firstly, the mechanism of the power coupling for the VSG control in a MG is analyzed, and the system dynamic model for the proposed power decoupling method is derived. Then, a total sliding-mode controller is designed for the power decoupling with the characteristics of the strong robustness and fast dynamic response. Moreover, an adaptive fuzzy-neural-network (AFNN) control is designed to mimic the TSMC law for relaxing the requirement of the detail system information in the TSMC. In addition, adaptive tuning laws for network parameters are derived according to the projection algorithm and the Lyapunov stability theorem for guaranteeing the network convergence as well as the totally power decoupling performance. Numerical simulations and experimental results are provided to verify the effectiveness and the superiority of all the proposed methods in this dissertation.

    中文摘要 I Abstract III 誌謝 VI Contents VII List of Acronyms X List of Figures XI List of Tables XV Chapter 1 Introduction 1 Chapter 2 System Description and Modeling 10 2.1 Overview 10 2.2 Modeling of LCL-Type Grid-Connected Inverter in Weak Power Grid with Grid Impedance 11 2.3 Basic Principle of VSG Control 14 2.4 Analysis of Power Flow Characteristic 16 Chapter 3 Design of Discrete-Time Backstepping Sliding-Mode Control for LCL-Type Grid-Connected Inverter 19 3.1 Overview 19 3.2 Discrete-Time Mathematical Model Derivation 20 3.3 Non-Causal Issue in Design of Proposed DTBSMC Method 22 3.4 Proposed DTBSMC Method 26 3.5 Numerical Simulations 32 3.6 Experimental Results 44 Chapter 4 Adaptive Fuzzy-Neural-Network Power Decoupling Strategy for Virtual Synchronous Generator in Microgrid 56 4.1 Overview 56 4.2 Analysis of Power Coupling 57 4.2.1 Issues of Power Decoupling 57 4.2.2 Implementation Intention of Power Decoupling 60 4.3 Design of Total Sliding-Mode Control Based Power Decoupling Strategy for Virtual Synchronous Generator 61 4.3.1 Motivation of Proposed Decoupling Strategy 61 4.3.2 Total Sliding-Mode Control for Power Decoupling Strategy 64 4.4 Adaptive Fuzzy-Neural-Network Control for Power Decoupling Strategy 67 4.5 Numerical Simulations 73 4.6 Experimental Results 80 Chapter 5 Conclusions and Future Research 90 5.1 Conclusions 90 5.2 Future Research 91 References 95

    [1] H. Han, X. Hou, J. Yang, J. Wu, M. Su, and J. M. Guerrero, “Review of power sharing control strategies for islanding operation of AC microgrids,” IEEE Trans. Smart Grid, vol. 7, no. 1, pp. 200-215, Jan. 2016.
    [2] R. J. Wai, Q. Q. Zhang, and Y. Wang, “A novel voltage stabilization and power sharing control method based on virtual complex impedance for an off-grid microgrid,” IEEE Trans. Power Electron., vol. 34, no. 2, pp. 1863-1880, Feb. 2019.
    [3] R. A. Fantino, C. A. Busada, and J. A. Solsona, “Observer-based grid-voltage sensorless synchronization and control of a VSI-LCL tied to an unbalanced grid,” IEEE Trans. Ind. Electron., vol. 66, no. 7, pp. 4972-4981, July 2019.
    [4] S. V. Jayalath, and M. Hanif, “Generalized LCL-filter design algorithm for grid-connected voltage-source inverter,” IEEE Trans. Ind. Electron., vol. 64, no. 3, pp. 1905-1915, Mar. 2017.
    [5] R. A. Fantino, C. A. Busada, and J. A. Solsona, “Optimum PR control applied to LCL filters with low resonance frequency,” IEEE Trans. Power Electron., vol. 33, no. 1, pp. 793-801, Jan. 2018.
    [6] J. Dannehl, C. Wessels, and F. W. Fuchs, “Limitations of voltage-oriented PI current control of grid-connected PWM rectifiers with LCL filters,” IEEE Trans. Ind. Electron., vol. 56, no. 2, pp. 380-388, Feb. 2009.
    [7] N. He, D. Xuand, Y. Zhu, J. Zhang, G. Shen, Y. Zhang, J. Ma, and C. Liu, “Weighted average current control in a three-phase grid inverter with an LCL filter,” IEEE Trans. Power Electron., vol. 28, no. 6, pp. 2785-2797, Jun. 2013.
    [8] R. N. Beres, X. Wang, F. Blaabjerg, M. Liserre, and C. L. Bak, “Optimal design of high-order passive-damped filters for grid-connected applications,” IEEE Trans. Power Electron., vol. 31, no. 3, pp. 2083-2098, Mar. 2016.
    [9] A. Kouchaki and M. Nymand, “Analytical design of passive LCL filter for three-phase two-level power factor correction rectifiers,” IEEE Trans. Power Electron., vol. 33, no. 4, pp. 3012-3022, Apr. 2018.
    [10] T. Liu, J. Liu, Z. Liu, and Z. Liu, “A study of virtual resistor-based active damping alternatives for LCL resonance in grid-connected voltage source inverters,” IEEE Trans. Power Electron., vol. 35, no. 1, pp. 247-262, Jan. 2020.
    [11] Y. Guan, Y. Wang, Y. Xie, Y. Lang, A. Lin, and X. Wang, “The dual-current control strategy of grid-connected inverter with LCL filter,” IEEE Trans. Power Electron., vol. 34, no. 6, pp. 5940-5952, June 2019.
    [12] F. D. Freijedo, E. R. Diaz, M. S. Golsorkhi, J. C. Vasquez, and J. M. Guerrero, “A root-locus design methodology derived from the impedance/admittance stability formulation and its application for LCL grid-connected converters in wind turbines,” IEEE Trans. Power Electron., vol. 32, no. 10, pp. 8218-8228, Oct. 2017.
    [13] X. Wang, L. Harnefors, and F. Blaabjerg, “Unified impedance model of grid-connected voltage-source converters,” IEEE Trans. Power Electron., vol. 33, no. 2, pp. 1775-1787, Feb. 2018.
    [14] D. Pan, X. Ruan, C. Bao, W. Li, and X. Wang “Optimized controller design for LCL-type grid-connected inverter to achieve high robustness against grid-impedance variation,” IEEE Trans. Ind. Electron., vol. 62, no. 3, pp. 1537-1547, Mar. 2015.
    [15] X. Li, J. Fang, Y. Tang, X. Wu, and Y. Geng, “Capacitor-voltage feedforward with full delay compensation to improve weak grids adaptability of LCL-filtered grid-connected converters for distributed generation systems,” IEEE Trans. Power Electron., vol. 33, no. 1, pp. 749-764, Jan. 2018.
    [16] J. Samanes, A. Urtasun, E. Gubia, and A. Petri, “Robust multisampled capacitor voltage active damping for grid-connected power converters,” Int. J. Electr. Power Energy Syst., vol. 105, pp. 741–752, Feb. 2019.
    [17] L. Zhou, X. Zhou, Y. Chen, Z. Lv, Z. He, W. Wu, L. Yang, K. Yan, A. Luo, and J. M. Guerrero, “Inverter-current-feedback resonance-suppression method for LCL-type DG system to reduce resonance-frequency offset and grid-inductance effect,” IEEE Trans. Ind. Electron., vol. 65, no. 9, pp. 7036–7048, Sep. 2018.
    [18] L. Yang and J. Yang, “A robust dual-loop current control method with a delay-compensation control link for LCL-type shunt active power filters,” IEEE Trans. Power Electron., vol. 34, no. 7, pp. 6183–6199, July 2019.
    [19] Q. Huang and K. Rajashekara, “Virtual RLC active damping for grid-connected inverters with LCL filters,” in Proc. IEEE Appl. Power Electron. Conf. Expo. (APEC), Mar. 2017, pp. 424-429.
    [20] Y. He, X. Wang, X. Ruan, D. Pan, X. Xu, and F. Liu, “Capacitor-current proportional-integral positive feedback active damping for LCL-type grid-connected inverter to achieve high robustness against grid impedance variation,” IEEE Trans. Power Electron., vol. 34, no. 12, pp. 12423-12436, Dec. 2019.
    [21] H. C. Chen, P. T. Cheng, F. Blaabjerg, and X. Wang, “A passivity-based stability analysis of the active damping technique in the offshore wind farm applications,” IEEE Trans. Ind. Appl., vol. 54, no. 5, pp. 5074-5082, Sep./Oct. 2018.
    [22] W. Qi, S. Li, S. C. Tan, and S. Y. R. Hui, “Sliding-mode control in natural frame with reduced number of sensors for three-phase grid-tied LCL-interfaced inverters,” IEEE Trans. Ind. Electron., vol. 66, no. 4, pp. 2903-2913, Apr. 2019.
    [23] H. Komurcugil, S. Ozdemir, I. Sefa, N. Altin, and O. Kukrer, “Sliding-mode control for single-phase grid-connected LCL-filtered VSI with double-band hysteresis scheme,” IEEE Trans. Ind. Electron., vol. 63, no. 2, pp. 864-73, Feb. 2016.
    [24] Y. Wang and R. J. Wai, “Adaptive power decoupling strategy for single-phase grid-connected converter,” IEEE Trans. Ind. Appl., vol. 55, no. 4, pp. 4275-4285, July/Aug. 2019.
    [25] S. Arora, P. Balsaraand, and D. Bhatia, “Input-output linearization of a boost converter with mixed load (constant voltage load and constant power load),” IEEE Trans. Power Electron., vol. 34, no. 1, pp. 815-825, Jan. 2019.
    [26] J. J. Ge, Z. M. Zhao, and J. J. Li, “Backstepping control for active power filter with LCL filter,” in 2nd IET Renewable Power Generation Conference (RPG 2013), 2013, pp. 1-4.
    [27] P. Lin, C. Zhang, P. Wang, X. Li, J. Xiao, P. Tu, and C. F. Hoong, “A global robust output regulation method for grid-connected inverter with LCL filter in weak grid condition,” in Proc. 12th IEEE Conf. Ind. Electron. Appl., Jun. 2017, pp. 1646-1651.
    [28] J. Wu and Y. Lu, “Adaptive backstepping sliding mode control for boost converter with constant power load,” IEEE Access, vol. 7, pp. 50797-50807, Apr. 2019.
    [29] J. Davila, “Exact tracking using backstepping control design and high-order sliding modes,” IEEE Trans. Autom. Contr., vol. 58, no. 8, pp. 2077-2081, Aug. 2013.
    [30] Y. J. Liu, C. L. P. Chen, G. X. Wen, and S. Tong, “Adaptive neural output feedback tracking control for a class of uncertain discrete-time nonlinear systems,” IEEE Trans. Neural Netw., vol. 22, no. 7, pp. 1162-1167, July 2011.
    [31] A. Y. Alanis, E. N. Sanchez, and A. G. Loukianov, “Real-time discrete backstepping neural control for induction motors,” IEEE Trans. Control Syst. Technol., vol. 19, no. 2, pp. 359-366, Mar. 2011.
    [32] Y. Li, C. Yang, S. S, Ge, and T. H. Lee, “Adaptive output feedback NN control of a class of discrete-time MIMO nonlinear systems with unknown control directions,” IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 41, no. 2, pp. 507-517, Apr. 2011.
    [33] H. Golpîra, A. R. Messina, and H. Bevrani, “Emulation of virtual inertia to accommodate higher penetration levels of distributed generation in power grids,” IEEE Trans. Power Syst., vol. 34, no. 5, pp. 3384-3394, Sept. 2019.
    [34] M. Shi, X. Chen, J. Zhou, Y. Chen, J. Wen and H. He, “Frequency restoration and oscillation damping of distributed VSGs in microgrid with low bandwidth communication,” IEEE Trans. Smart Grid, vol. 12, no. 2, pp. 1011-1021, Mar. 2021.
    [35] Q. Zhang, Y. Li, Z. Ding, W. Xie, and C. Li, “Self-adaptive secondary frequency regulation strategy of microgrid with multiple virtual synchronous generators,” IEEE Trans. Ind. Appl., vol. 56, no. 5, pp. 6007-6018, Sept.-Oct. 2020.
    [36] H. Beck and R. Hesse, “Virtual synchronous machine,” in Proc. 9th Int. Conf. Elect. Power Qual. Utilization, Barcelona, Spain, 2007, pp. 1-6.
    [37] Q. Zhong and G. Weiss, “Synchronverters: inverters that mimic synchronous generators,” IEEE Trans. Ind. Electron., vol. 58, no. 4, pp. 1259-1267, Apr. 2011.
    [38] O. Mo, S. D'Arco, and J. A. Suul, “Evaluation of virtual synchronous machines with dynamic or quasi-stationary machine models,” IEEE Trans. Ind. Electron., vol. 64, no. 7, pp. 5952-5962, July 2017.
    [39] X. Meng, J. Liu, and Z. Liu, “A generalized droop control for grid-supporting inverter based on comparison between traditional droop control and virtual synchronous generator control,” IEEE Trans. Power Electron., vol. 34, no. 6, pp. 5416-5438, June 2019.
    [40] T. Shintai, Y. Miura, and T. Ise, “Oscillation damping of a distributed generator using a virtual synchronous generator,” IEEE Trans. Power Del., vol. 29, no. 2, pp. 668-676, Apr. 2014.
    [41] J. Liu, Y. Miura, H. Bevrani, and T. Ise, “Enhanced virtual synchronous generator control for parallel inverters in microgrids,” IEEE Trans. Smart Grid, vol. 8, no. 5, pp. 2268-2277, Sept. 2017.
    [42] H. Wu, X. Ruan, D. Yang, X. Chen, W. Zhao, Z. Lv, and Q. Zhong, “Small-signal modeling and parameters design for virtual synchronous generators,” IEEE Trans. Ind. Electron., vol. 63, no. 7, pp. 4292-4303, July 2016.
    [43] J. Liu, Y. Miura, and T. Ise, “Comparison of dynamic characteristics between virtual synchronous generator and droop control in inverter-based distributed generators,” IEEE Trans. Power Electron., vol. 31, no. 5, pp. 3600-3611, May 2016.
    [44] X. Hou, Y. Sun, X. Zhang, J. Lu, P. Wang, and J. M. Guerrero, “Improvement of frequency regulation in VSG-based AC microgrid via adaptive virtual inertia,” IEEE Trans. Power Electron., vol. 35, no. 2, pp. 1589-1602, Feb. 2020.
    [45] A. Karimi, Y. Khayat, M. Naderi, T. Dragičević, R. Mirzaei, F. Blaabjerg, and H. Bevrani, “Inertia response improvement in AC microgrids: a fuzzy-based virtual synchronous generator control,” IEEE Trans. Power Electron., vol. 35, no. 4, pp. 4321-4331, Apr. 2020.
    [46] T. Wen, D. Zhu, X. Zou, B. Jiang, L. Peng, and Y. Kang, “Power coupling mechanism analysis and improved decoupling control for virtual synchronous generator,” IEEE Trans. Power Electron., vol. 36, no. 3, pp. 3028-3041, Mar. 2021.
    [47] L. Huang, H. Xin, Z. Wang, L. Zhang, K. Wu, and J. Hu, “Transient stability analysis and control design of droop-controlled voltage source converters considering current limitation,” IEEE Trans. Smart Grid, vol. 10, no. 1, pp. 578-591, Jan. 2019.
    [48] J. M. Guerrero, J. Matas, L. Garcia de Vicuna, M. Castilla, and J. Miret, “Decentralized control for parallel operation of distributed generation inverters using resistive output impedance,” IEEE Trans. Ind. Electron., vol. 54, no. 2, pp. 994-1004, Apr. 2007.
    [49] T. L. Vandoorn, B. Meersman, L. Degroote, B. Renders, and L. Vandevelde, “A control strategy for islanded microgrids with dc-link voltage control,” IEEE Trans. Power Del., vol. 26, no. 2, pp. 703-713, Apr. 2011.
    [50] A. Solanki, A. Nasiri, V. Bhavaraju, Y. L. Familiant, and Q. Fu, “A new framework for microgrid management: Virtual droop control,” IEEE Trans. Smart Grid, vol. 7, no. 2, pp. 554-566, Mar. 2016.
    [51] P. Zhang, H. Zhao, H. Cai, J. Shi, and X. He, “Power decoupling strategy based on ‘virtual negative resistor’ for inverters in low-voltage microgrids,” IET Power Electron., vol. 9, no. 5, pp. 1037-1044, Apr. 2016.
    [52] Y. W. Li and C. Kao, “An accurate power control strategy for power-electronics-interfaced distributed generation units operating in a low-voltage multibus microgrid,” IEEE Trans. Power Electron., vol. 24, no. 12, pp. 2977-2988, Dec. 2009.
    [53] J. M. Guerrero, Luis Garcia de Vicuna, J. Matas, M. Castilla, and J. Miret, “Output impedance design of parallel-connected UPS inverters with wireless load-sharing control,” IEEE Trans. Ind. Electron., vol. 52, no. 4, pp. 1126-1135, Aug. 2005.
    [54] M. Li, Y. Wang, N. Xu, Y. Liu, W. Wang, H. Wang, and W. Lei, “A novel virtual synchronous generator control strategy based on improved swing equation emulating and power decoupling method,” in Proc. IEEE ECCE Conf., Milwaukee, WI, USA, 2016, pp. 1-7.
    [55] T. Wen, X. Zou, D. Zhu, X. Guo, L. Peng, and Y. Kang, “Comprehensive perspective on virtual inductor for improved power decoupling of virtual synchronous generator control,” IET Renew. Power Gener., vol. 14, no. 4, pp. 485-494, Mar. 2020.
    [56] Q. Q. Zhang and R. J. Wai, “Robust power sharing and voltage stabilization control structure via sliding-mode technique in islanded microgrid,” Energies, vol. 14, no. 4, pp. 883, Feb. 2021.
    [57] W. Qi, S. Li, S. Tan, and S. Y. R. Hui, “Parabolic-modulated sliding-mode voltage control of a buck converter,” IEEE Trans. Ind. Electron., vol. 65, no. 1, pp. 844-854, Jan. 2018.
    [58] Y. Shtessel, C. Edwards, L. Fridman, and A. Levant, Sliding Mode Control and Observation. New York, NY, USA: Birkhauser, 2014.
    [59] L. Marton and B. Lantos, “Control of robotic systems with unknown friction and payload,” IEEE Trans. Contr. Syst. Technol., vol. 19, no. 6, pp. 1534-1539, Nov. 2011.
    [60] J. Fei and Y. Chu, “Double hidden layer output feedback neural adaptive global sliding mode control of active power filter,” IEEE Trans. Power Electron., vol. 35, no. 3, pp. 3069-3084, Mar. 2020.
    [61] R. J. Wai, “Fuzzy sliding-mode control using adaptive tuning technique,” IEEE Trans. Ind. Electron., vol. 54, no. 1, pp. 586-594, Feb. 2007.
    [62] X. Shen, H. Wang, J. Li, Q. Su, and L. Gao, “Distributed secondary voltage control of islanded microgrids based on RBF-neural-network sliding-mode technique,” IEEE Access, vol. 7, pp. 65616-65623, June 2019.
    [63] R. J. Wai and R. Muthusamy, “Fuzzy-neural-network inherited sliding-mode control for robot manipulator including actuator dynamics,” IEEE Trans. Neural Netw. Learn. Syst., vol. 24, no. 2, pp. 274-287, Feb. 2013.
    [64] S. Li and J. Fei, “Adaptive second-order sliding mode fuzzy control based on linear feedback strategy for three-phase active power filter,” IEEE Access, vol. 6, pp. 72992-73000, Nov. 2018.
    [65] S. Saadatmand, P. Shamsi, and M. Ferdowsi, “Power and frequency regulation of synchronverters using a model free neural network–based predictive controller,” IEEE Trans. Ind. Electron., vol. 68, no. 5, pp. 3662-3671, May 2021.
    [66] Y. Wang and R. J. Wai, “Design of discrete-time backstepping sliding- mode control for LCL-type grid-connected inverter,” IEEE Access, vol. 8, no. 1, pp. 95082-95098, May 2020.
    [67] Y. Wang and R. J. Wai, “Adaptive fuzzy-neural-network power decoupling strategy for virtual synchronous generator in microgrid,” IEEE Trans. Power Electron., vol. 37, no. 4, pp. 3878-3891, Apr. 2022.
    [68] A. Yazdani and R. Iravani, Voltage-Sourced Converter in Power Systems: Modelling, Control, and Application. New York, NY, USA: Wiley, 2010.
    [69] D. G. Holmes and T. Lipo, Pulse Width Modulation for Power Converters: Principles and Practice. Piscataway, NJ: IEEE Press, 2003.
    [70] F. Guo, C. Wen, J. Mao, and Y. Song, “Distributed secondary voltage and frequency restoration control of droop-controlled inverter-based microgrids,” IEEE Trans. Ind. Electron., vol. 62, no. 7, pp. 4355-4364, July 2015.
    [71] K. J. Astrom and B. Wittenmark, Adaptive Control. North Chelmsford, MA, USA: Courier Corporation, 2013.
    [72] K. P. Huang, Y. Wang, and R. J. Wai, “Design of power decoupling strategy for single-phase grid-connected inverter under non-ideal power grid,” IEEE Trans. Power Electron., vol. 34, no. 3, pp. 2938-2955, Mar. 2019.
    [73] J. Yu, P. Shi, H. Yu, B. Chen, and C. Lin, “Approximation-based discrete-time adaptive position tracking control for interior permanent magnet synchronous motors,” IEEE Trans. Cybern., vol. 45, no. 7, pp. 1363-1371, July 2015.
    [74] S. S. Ge, G. Y. Li, and T. H. Lee, “Adaptive NN control for a class of strict-feedback discrete-time nonlinear systems,” Automatica, vol. 39, no. 5, pp. 807-819, May 2003.
    [75] K. Jalili, and S. Bernet, “Design of LCL filters of active-front-end two-level voltage-source converters,” IEEE Trans. Ind. Electron., vol. 56, no. 5, pp. 1674-1689, May 2009.
    [76] IEEE Recommended Practice and Requirements for Harmonic Control in Electric Power Systems, IEEE Std. 519-2014 (Revision of IEEE Std. 519-1992), June 11, 2014.
    [77] S. G. Parker, B. P. McGrath, and D. G. Holmes, “Regions of active damping control for LCL filters,” IEEE Trans. Ind. Appl., vol. 50, no. 1, pp. 424-432, Jan./Feb. 2014.
    [78] N. Wang and M. Joo Er, “Self-constructing adaptive robust fuzzy neural tracking control of surface vehicles with uncertainties and unknown disturbances,” IEEE Trans. Control Syst. Technol., vol. 23, no. 3, pp. 991-1002, May 2015.
    [79] Z. Ma, Z. Wang, Y. Guo, Y. Yuan, and H. Chen, “Nonlinear multiple models adaptive secondary voltage control of microgrids,” IEEE Trans. Smart Grid, vol. 12, no. 1, pp. 227-238, Jan. 2021.
    [80] S. Hou, J. Fei, C. Chen, and Y. Chu, “Finite-time adaptive fuzzy-neural-network control of active power filter,” IEEE Trans. Power Electron., vol. 34, no. 10, pp. 10298-10313, Oct. 2019.
    [81] R. J. Wai, Y. F. Lin, and Y. K. Liu, “Design of adaptive fuzzy-neural-network control for a single-stage boost inverter,” IEEE Trans. Power Electron., vol. 30, no. 12, pp. 7282-7298, Dec. 2015.
    [82] X. Hao, X. Yang, T. Liu, L. Huang, and W. Chen, “A sliding-mode controller with multiresonant sliding surface for single-phase grid-connected VSI with an LCL filter,” IEEE Trans. Power Electron., vol. 28, no. 5, pp. 2259-2268, May 2013.
    [83] H. Ma, Y. Li, and Z. Xiong, “Discrete-time sliding-mode control with enhanced power reaching law,” IEEE Trans. Ind. Electron., vol. 66, no. 6, pp. 4629-4638, June 2019.
    [84] W. M. Haddad and V. Chellaboina, Nonlinear Dynamical Systems and Control. Princeton, NJ, USA: Princeton Univ. Press, 2008.

    QR CODE