簡易檢索 / 詳目顯示

研究生: 羅志緯
Chin-wei Lo
論文名稱: 於鈦/矽基材上成長含氮二氧化鈦薄膜及其作為光觸媒之材料及性質研究
Study on TiO2 photocatalyst deposited on Ti/Si substrate with and without nitrogen doping
指導教授: 李嘉平
Chiapyng Lee
口試委員: 顏怡文
Yee-wen Yen
林俊成
Jing-cheng Lin
林順堂
none
李文鴻
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 142
中文關鍵詞: 光觸媒
外文關鍵詞: photocatalyst
相關次數: 點閱:206下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究主要是探討以射頻磁控濺鍍(RF magnetron sputtering)之系統沉積二氧化鈦以及含氮二氧化鈦薄膜於鈦/矽基材上,或者再以鍛燒的方式對膜材進行後處理,探討氣體流量參數以及後處理溫度的改變對結晶結構、表面形態和化學組成之影響,並測試膜材光催化的效能。
實驗結果顯示,利用大氣氧化純鈦膜所製備的二氧化鈦膜對紫外光的照射具有明顯的銀還原現象且接觸角下降幅度達70%。然而在反應性濺鍍沉積二氧化鈦膜前,必須先於基材預鍍一層鈦膜,才可直接成長出具有光觸媒效應之Anatase(004)結構,且對紫外光照射的光催化效果隨著氧氣流量增加而增加,經熱處理後,對紫外光照射的催化效果隨處理溫度升高可獲得大幅提升,尤其在Ar/O2=2(O2=2sccm),溫度500℃時為Anatase與Rutile兩相混合,因而具有最佳的紫外光光催化效果,接觸角下降近80%,較未熱處理時提高了20%,亦較市售二氧化鈦粉末(Degussa P-25)製成之薄膜效果佳。
在同時通入N2及O2成長含氮二氧化鈦時,發現氧氣流量以及靶材材料會影響氮原子的摻入量。以鈦為靶材時,在O2=4sccm時,易達完全氧化,故氮原子不易摻入而以氮分子吸附為主,在降低氧氣流量後,氮原子可明顯的摻入膜材中,其中以N2/O2=2.33(O2=3sccm)時,有最大氮原子摻入量約2.1 at.%,並且在可見光照射之下,已有顯著銀顆粒還原於膜材表面,且水滴接觸角亦可下降達60%,相同的條件改以氮化鈦為靶材時,可得到較大氮原子摻入量約3.2 at.%,亦具有較佳的可見光效果。


The study is to deposit TiO2 photocatalyst thin films on Ti/Si substrate with and without nitrogen doping in a R.F. magnetron sputtering system. The crystal structure, surface morphology, chemical composition and other characteristics of TiO2 or TiO2-xNx films were also investigated with different gas flow ratios and thermal treatments. Finally, the photocatalytic effect were examined by the use of silver reduction and contact angle measurement.
Experimental results indicated that after thermal oxidation the TiO2 film showed remarkable silver reduction and hydrophilic behaviors under UV light. When TiO2 films were deposited by reactive sputtering, a layer of Ti had to be deposited before hand on the substrate. The TiO2 films deposited on Ti/Si substrate could form Anatase structure and the photocatalytic effect increased with increasing O2 flow rate. After annealing in air at various temperatures, the photocatalytic effect was be enhanced. Especially with Ar/O2=2(O2=2sccm) and annealing at 500℃, the films formed Anatase and Rutile mixed phase structure and had better photocatalytic effect than other deposition and thermal treatment conditions under exposure to UV light .
N2/O2 flow ratio and target material played very important roles for the deposition of TiO2-xNx films. The deposition films were TiO2 at N2/O2=1.75(O2=4sccm) and nitrogen atom were difficult to be doped into. The nitrogen atom existed in TiO2 by chemical adsorption. But the TiN crystal structure appeared with N2/O2=3.5(O2=2sccm) which affected the photocatalytic effect with exposured to visible light. When N2/O2=2.33(O2=3sccm), films with a concentration of 2.1 at.% β-N with only Anatase structure was grown. It showed remarkable silver reduction result with exposure to visible light and the 59.6% decrease in contact angle. When the target changed from Ti to TiN, the amount of β-N increased in the TiO2-xNx film. The TiO2-xNx film contained 3.2 at.% β-N deposited with TiN target at N2/O2=2.33(O2=3sccm). It had better photocatalytic effect with exposure to visible light.

中文摘要.................................................I 英文摘要.................................................II 誌謝.....................................................III 目錄.....................................................IV 圖索引...................................................VII 表索引...................................................XII 第一章 緒論..............................................1 1-1前言..................................................1 1-2光觸媒簡介............................................3 第二章 文獻回顧..........................................11 2-1光催化反應......................................11 2-2光觸媒之氧化還原原理............................12 2-3改善二氧化鈦反應效率............................14 2-3.1金屬原子之添加..............................14 2-3.2金屬離子之添加..............................16 2-3.3可見光型光觸媒(添加非金屬元素)..............18 2-4氧化形成二氧化鈦及氮或碳摻入二氧化鈦膜..........20 第三章 實驗設備與程序....................................22 3-1實驗設備........................................22 3-1.1射頻磁控濺鍍系統............................22 3-1.2高溫爐管氧化及退火系統......................26 3-1.3 UV光及一般光照射系統.......................26 3-2實驗材料與儀器..................................26 3-2.1實驗材料....................................26 3-2.2分析儀器....................................28 3-3實驗設計........................................29 3-3.1實驗程序設計................................29 3-3.2薄膜製備條件................................31 3-3.3光觸媒效能測試-銀還原.......................32 第四章 結果與討論........................................34 4-1純鈦薄膜在大氣中氧化後之材料分析................34 4-1.1 沉積純鈦薄膜...............................34 4-1.2 大氣氧化純鈦薄膜之分析.....................34 4-1.3 大氣氧化純鈦薄膜之光催化效果...............45 4-2反應性濺鍍成長二氧化鈦薄膜......................59 4-2.1 反應性濺鍍二氧化鈦薄膜之材料分析...........59 4-2.2 反應性濺鍍TiO2於Ti/Si基材之光催化效果......71 4-3反應性濺鍍成長含氮之二氧化鈦膜..................84 4-3.1 含氮二氧化鈦薄膜之材料分析-純鈦靶材........84 4-3.2 含氮二氧化鈦膜的光催化效果-純鈦靶材........95 4-4以TiN為靶材濺鍍含氮二氧化鈦膜...................103 4-4.1 含氮二氧化鈦膜之材料分析-氮化鈦靶材........103 4-4.2 含氮二氧化鈦膜之光催化效果氮化鈦靶材.......112 第五章 結論..............................................119 參考文獻.................................................121

參考文獻
【1】Patent Map Series (日本特許廳), (2001)
【2】A. Fujishima and K. Honda, Nature, 238, pp.37-38, (1972)
【3】呂宗昕,“圖解奈米科技與光觸媒“, 商周出版, (2003)
【4】A. Vittadini, A. Selloni, F. P. Rotzinger and M. Gratzel, Physical Review Letters, 81, pp.2954-2957, (1998)
【5】T. Bredow and K. Jug, Surface Science, 327, pp.398-408, (1995)
【6】許明琮, “射頻磁控濺鍍法製備TiO2及TiO2-XNX光觸媒薄膜之研究“, 碩士學位論文, 國立雲林科技大學化學工程研究所, pp.8-9, (2003)
【7】J. K. Burdett, T. Hughbank, G. J. Miller, J. W. Richardson and J. V. Smith, Journal of American Chemical Society, 109, pp.3639-3646, (1987)
【8】P. I. Gouma, P. K. Dutta and M. J. Mills, Nanostructured Materials, 11, pp.1231-1237, (1999)
【9】林聖凱,“以微波電漿火炬製備可見光化光觸媒之研究“, 私立中原大學化學工程研究所, pp.6-7, (2005)
【10】J. Szczyrbowski, G. Bräuer, M. Ruske, J. Bartella, J. Schroeder and A. Zmelty, Surface and Coating Technology, 112, pp.261-266, (1999)
【11】B. Xia, H. Huang and Y. Xie, Materials Science and Engineering, B57, pp.150-154, (1999)
【12】M. Yamagishi, S. Kuriki, P. K. Song and Y. Shigesato, Thin Solid Films, 442, pp.227-231, (2003)
【13】D. Dumitriu, A. R. Bally, C. Ballif, P. Hones, P. E. Schmid, R. Sanjines, F. Levy and V. I. Parvulescu, Applied Catalysis B: Environmental, 25, pp.83-92, (2000)
【14】P. Zeman and S. Takabayashi, Thin Solid Films, 433, pp.57-62, (2003)
【15】J. V. Grahn and M. Linder, Journal of Vacuum Science and Technology A, 16, pp.2495-2500, (1998)
【16】J. T. Yates, Jr. A. L. Linsebigler, G. Lu, Chemical Reviews, pp.735-758, (1995)
【17】王勝民,“新世代的生色產品-光催化觸媒“, 化工資訊, pp.34-35, (2000)
【18】M. Bekholet, Water Science and Technology, 35(11-12), pp.95-100, (1997)
【19】K. Sunda, Y. Kikuchi, K. Hashimoto and A. Fujishima, Environmental Science and Technology, 32:5, pp.726-728, (1998)
【20】M. Schiavello, “Heterogeneous Photocatalysis”, Wiley, (1997)
【21】NEDO技術開發機構,Http://www.nedo.go.jp/
【22】掌軒,“以低溫燒結法製作二氧化鈦光觸媒薄膜的探討“, 碩士學位論文, 元智大學化學工程學系研究所, (2003)
【23】M. S. Ahmed and Y. A. Attia, J. Non-crystalline Solids, 186, pp.402-407, (1995)
【24】S. D. Richardson, A. D. Thruston, T. M. Collette, K. S. Patterson, B.W. Lykins and J. C. Ireland, Environmental Science and Technology, 30, pp.3327-3334, (1996)
【25】M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, Chemical Reviews 20, pp.69-95, (1995)
【26】E. T. C. Vogt, A. Boot, A. J. Vandillen, J. W. Geus and F. M. G. Vanderkerkhof, Journal of Catalysis, 114, pp.313, (1988)
【27】C. He, Y. Yu, X. Hu and A. Larbot, Applied Surface Science, 200, pp.239-247, (2002)
【28】J. M. Herrmann, H. Tahiri, Y. Ait-Ichon, G. Lassaletta, A. R. Gonzalez-Elipe and A. Fernandez, Applied Catalyssis B: Environment, 13, pp.219-228, (1997)
【29】H. Nakajima and T. Mori , Journal of Applied Physics, 96, pp.925, (2004)
【30】K. M. Beck, T. Sasaki and N. Koshizaki, Chemical physics letters, 301, pp.336-342, (1999)
【31】W. Zhang, Y. Li and S. Zhu, F. Wang, Catalysis Today, 93-95, pp.589-594, (2004)
【32】C. M. Visinescu, R. Sanjines and F. Levy, V.I. Parvulescu, Applied catalysis, 60, pp.155-162, (2005)
【33】W. Choi, A. Termin and M. R. Hoffmann, Journal of Physical and Chemistry, 98, pp.13669-13679, (1994)
【34】K. E. Karakitson and X.E. Verykios, Journal of Physical and Chemistry, 97, pp.1184-1189, (1993)
【35】K. Wilke and H. D. Breuer, Journal of Photochemistry Photobiology A: Chemistry, 121, pp.49-53, (1999)
【36】Y. Xie and C. Yuan, Applied Catalysis B: Environmental, 46, pp.251-259, (2003)
【37】Y. Suda, H. Kawasaki, T. Ueda and T. Ohshima, Thin solid films, 453-454, pp.162-166, (2004)
【38】Y. Suda, H. Kawasaki, T. Ueda and T. Ohshima, Thin solid films, 475, pp. 337-341, (2005)
【39】T. Ohno, M. Akiyoshi, T. Umebayashi, K. Asai, T. Mitsui and M. Matsumura, Applied catalysis, 265, pp.115-121, (2004)
【40】R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga, Science, 293, pp. 269-271, (2001)
【41】O. Diwald, T. L. Thompson, Ed G. Goralski, S. D. Walck and J. T. Yates, Jr., Journal of Physical and Chemistry B, 108, pp.52-57, (2004)
【42】S. H. Mohamed, O. Kappertz, J. M. Ngaruiya, T. Niemeier, R. Drese, R. Detemple, M. M. Wakkad and M. Wuttig, Physica Status solidi (a) 201, pp.90-102, (2004)
【43】S. Z. Chen, P. Y. Zhang, D. M. Zhuang and W. P. Zhu, Catalysis Communications, 5, pp.677-680, (2004)
【44】M. C. Yang, T. S. Yang and M. S. Wong, Thin solid films, 469-470, pp.1-5, (2004)
【45】L. I. Vergara, M. C. G. Passeggi Jr., J. Ferron, Applied surface science. 187, pp.199-206, (2002)
【46】M. Wittmer, J. Noser and H. Melchior, Journal of Applied Physics, 52, pp.6659-6664,,(1981)
【47】S. Logothetidis, G. Stergioudis and P. Patsalas, Surface and Coatings Technology, 100-101, pp.295-299, (1998)
【48】V. Pore, M. Heikkila, M. Ritala, M. Leskela and S. Areva, Journal of Photochemistry and photobiology A: Chemistry, 177, pp. 68-75, (2006)
【49】T. Morikawa, R. Asahi, T. Ohwaki, K. Aoki and Y. Taga, Japan Journal of Applied physics, 40, pp.L561-L563, (2001)
【50】M. Shen, Z. Wu, H. Huang, Y. Du, Z. Zou and P. Yang, Material Letters, 60, pp.693-697, (2006)
【51】N. C. Saha and H. G. Tompkins, Journal of Applied Physics, 6, pp.3072-3079, (1992)
【52】K. Kobayakawa, Y. Murakami and Y. Sato, Journal of Photochemistry and photobiology A: Chemistry, 170, pp.171-179, (2005)
【53】W. Zhang, Y. Li, S. Zhu and F. Wang, Surface and Coatings Technology, 182, pp.192-198, (2004)
【54】張仕正, “在二氧化鈦上進行Salicylic acid可見光光催化反應的研究“, 碩士學位論文, 國立中央大學化學與材料工程研究所, (2003)
【55】T. Miyagi, M. Kamei. T. Mitsuhashi, T. Ishigaki and A. Yamazaki, Chemical Physics Letters, 390, pp.399-402, (2004)
【56】周宏邦,“濺鍍二氧化鈦與氮摻雜二氧化鈦薄膜之結構與光觸媒性質研究“, 碩士學位論文, 國立東華大學材料科學與工程學系, (2004)

QR CODE