簡易檢索 / 詳目顯示

研究生: 陳世崴
Shi-Wei Chen
論文名稱: 利用脈波縮減/增加機制之工作週期校正電路
Duty Cycle Corrector Based on Pulse Shrinking/Stretching Mechanism
指導教授: 陳伯奇
Poki Chen
口試委員: 宋國明
none
羅有綱
none
姚嘉瑜
none
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 110
中文關鍵詞: 工作週期校正脈波寬度縮減/增加機制低功率寬範圍
外文關鍵詞: duty cycle corrector, pulse shrinking/stretching mechanism, low power, wide range
相關次數: 點閱:284下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

工作週期校正電路(Duty Cycle Corrector,DCC)的功能為調整50%的工作週期,廣泛地使用在雙倍資料速度同步動態隨機存取記憶體(Double Data Rate SDRAM,DDR SDRAM)、雙取樣類比至數位轉換器(Double-Sampling ADC)、延遲鎖定迴路(Delay Locked Loop,DLL)與鎖相迴路(Phase Locked Loop,PLL)等需要時脈訊號的上升緣與下降緣的運作。工作週期校正電路在架構上可分為數位式與類比式。數位式架構又可分為回授型與非回授型兩種。類比式架構通常為回授型,以較長的鎖定時間來獲得較精準的工作週期校正。
在本篇論文中,提出一簡單類比負回授架構之工作週期校正電路,利用脈波縮減/增加機制(Pulse Shrinking/Stretching Mechanism)達到工作週期的校正。所提及電路不用如數位式架構需要許多複雜的電路架構,以及類比式充電幫浦所產生的問題,就能達成工作週期的校正。
利用脈波縮減/增加機制之工作週期校正電路(Duty Cycle Corrector Based on Pulse Shrinking/Stretching Mechanism)已經實現。所提及的工作週期校正電路經由TSMC 0.35μm 標準CMOS製程(TSMC 0.35μm standard CMOS process)製造完成。具有廣的輸入工作週期範圍30%~70%與寬的輸入頻率範圍3MHz~660MHz,且工作週期校正誤差在-1%與1%之間,因此能使電路更適合於超寬頻(Ultra Wide Band)的應用上。此晶片面積只有0.3 × 0.2 mm2,而功率消耗在550 MHz操作頻率時為1.1 mW。


The duty cycle correctors (DCCs) are widely used to adjust the clock duty cycle to 50% for DDR (double data rate)-SDRAM, double-sampling ADC, DLL (delay locked loop) and PLL (phase locked loop), where both clock rising and falling edges are used for operation. There are two major categories, digital and analog, for DCC realization in literatures. The digital DCCs can be further classified into the feedback type and the non-feedback type. The analog DCCs are usually implemented as feedback type to get better duty cycle accuracy at the expense of long locking time.
In this thesis, a simple analog DCC with negative feedback is proposed. The pulse shrinking/stretching mechanism is utilized to achieve the duty cycle correction. Neither the complicated circuit in digital DCCs nor the charge pump in analog ones is required.
A duty cycle corrector based on pulse shrinking/stretching mechanism is presented. The proposed DCC has been fabricated in a TSMC 0.35μm standard CMOS process. An input duty cycle range of 30%~70% is achieved. The duty cycle error is between -1.0% to +1% for the widest frequency operation range of 3MHz~660MHz ever fulfilled which makes the circuit best suited for ultra wide band applications. The chip area is merely 0.3 × 0.2 mm2 and the power consumption is 1.1mW at 550 MHz.

第1章 緒論 1 1-1 研究背景 1 1-2 研究動機 4 1-3 論文架構 5 第2章 工作週期校正電路 6 2-1 數位式工作週期校正電路 6 2-2 類比式工作週期校正電路 23 2-3 比較 31 第3章 利用脈波縮減/增加機制之工作週期校正電路 33 3-1 利用脈波縮減/增加機制之工作週期校正電路 33 3-2 壓控脈波縮減/增加延遲線 45 3-3 緩衝器 47 3-4 差動低通濾波器 48 第4章 運算放大器 49 4-1 雙級運算放大器 49 4-2 偏壓電路 52 4-3 雙級放大器頻率響應 55 第5章 電路設計與模擬 64 5-1 設計流程與考量 64 5-2 脈波縮減/增加延遲線模擬 66 5-3 緩衝器模擬 69 5-4 雙級運算放大器模擬 71 5-5 工作週期校正整體電路模擬 74 5-6 佈局考量 83 第6章 晶片量測 86 6-1 量測環境 86 6-2 量測結果 91 第7章 晶片比較 97 7-1 晶片效能比較 97 7-2 未來展望 99 參 考 文 獻 100

[1] P. H. Yang and J. S. Wang, “Low-voltage pulsewidth control loops for SOC applications,” IEEE JSSC, vol. 37, no. 10, pp.1348-1351, Oct. 2002.
[2] Neil H.E. Weste and Kamran Eshraghian, “Principles of CMOS VLSI Design : A systems Perspective 2/E,” Addison-Wesley, 1998.
[3] J. J. NAM and H. J. PARK, “An all-digital CMOS duty cycle correction circuit with a duty-cycle correction range of 15-to-85% for multi-phase applications,” IEICE Trans. Electron., vol.88, no.4, Apr. 2005
[4] S. I. Cho, J. S. Heo, H. J. Park, M. H. Park, and Y. H. Kim, “CMOS sense-amplifier type flip-flop having improved setup/hold margin ,” IEICE Trans. Electron., vol.86, no.12, pp.2508-2510, Dec. 2003.
[5] K. Agarwal and R. Montoye, “A duty-cycle correction circuit for high-frequency clocks,” IEEE Symposium on VLSI Circuits, pp.106-107, 2006.
[6] Y. C. Jang, S. J. Bae, and H. J. Park, “CMOS digital duty cycle correction Circuit for multi-phase clock,” Electronics Letters, vol.39, no.19, pp.1383-1384, Sept. 2003.
[7] S. Sidiropoulos and M. Horowitz, “A 700-Mb/s/pin CMOS signaling interface using current integrating receivers,” IEEE JSSC, vol. 32, no. 5, pp.681-690, May 1997.
[8] C. Yoo, C. Jeong, and J. Kih, “Open-loop full-digital duty cycle correction circuit,” Electronics Letters, vol. 41, no. 11, pp.635-636, May 2005.
[9] Y. M. Wang and J. S. Wang, “An all-digital 50% duty-cycle corrector,” IEEE ISCAS, vol. 2, pp.925-928, May 2004.
[10] Joonsuk Lee and Beomsup Kim, “A low-noise fast-lock phase-lock loop with adaptive bandwidth control ,” IEEE JSSC, vol. 35, no. 8, pp.1137-1145, Aug. 2000.
[11] F. Mu and C. Svensson, “Pulsewidth control loop in high-speed CMOS clock buffers,” IEEE JSSC , vol. 35, no. 2, pp.134-141, Feb. 2000.
[12] W. M. Lin and H. Y. Huang, “A low-jitter mutual-correlated pulsewidth control loop circuit,” IEEE JSSC, vol. 39, no 8, pp.1366-1369, Aug. 2004.
[13] K. Nakamura, M. Fukaishi, Y. Hirota, Y. Nakazawa, and M.Yotsuyanagi, “A CMOS 50% duty cycle repeater using complementary phase blending,” IEEE Symposium on VLSI Circuits, pp.48 – 49, June 2000.
[14] S. K. Kao and S. I. Liu, “All-digital fast-locked synchronous duty-cycle corrector,” IEEE Transactions on Circuits and Systems II, vol. 53, no. 12, pp.1363-1367, Dec. 2006.
[15] B. W. Garlepp, K. S. Donnelly, Jun Kim, P. S. Chau, J. L. Zerbe, C. Huang, C. V. Tran, C. L. Portmann, D. Stark, Yiu-Fai Chan, T. H. Lee, and M. A. Horowitz, “A portable digital DLL for high-speed CMOS interface circuits,” IEEE JSSC, vol. 34, no. 5, pp.632-644, May 1999.
[16] B. J. Chen, S. K. Kao, and S. J. Liu, “An all-digital duty cycle corrector,” IEEE Symposium on VLSI-DAT., pp.1-4, Apr. 2006.
[17] K. H. Kim, G. H. Cho, J. B. Lee, and S. I. Cho,“Built-in duty cycle corrector using coded phase blending scheme for DDR/DDR2 synchronous DRAM applications,” IEEE Symposium on VLSI Circuits, pp.287-288, June 2003.
[18] S. J. Jang, Y. H. Jun, J. G. Lee, and B. S. Kon, “ASMD with duty cycle correction scheme for high-speed DRAM,” Electronics Letters, vol. 37, no. 16, pp.1004-1006, Aug. 2001.
[19] J. B. Lee, K. H. Kim, C. Yoo, S. Lee, O. G. Na, C. Y. Lee, H. Y. Song, J. S. Lee, Z. H. Lee, K. W. Yeom, H. J. Chung, I. W. Seo, M. S. Chae, Y. H. Choi, and S. I. Cho, “Digitally-controlled DLL and I/O circuits for 500 Mb/s/pin × 16DDR SDRAM,” ISSCC, pp. 68-69, 2001.
[20] T. Mantano, Y. Takai, T. Takahashi, Y. Sakito, I. Fujii, Y.T. Takahashi, H. Fujisawa, S. Miyatake, T. Sekiguchi, K. Koyama, and K. Miyazawa, “A 1-Gb/s/pin 512-Mb DDRII SDRAM using a digital DLL and a slew-rate-controlled output buffer,” IEEE JSSC, vol. 35, no.2, pp. 762-768, May. 2003.
[21] Yasuhiro Takai et al., “A 250-Mb/s/pin, 1-Gb Double-Data-Rate SDRAM with a bidirectional delay and an interbank shated redundancy scheme,” IEEE JSSC, vol. 35, no. 2, pp. 149-159, Feb. 2000.
[22] Takanori Saeki, et al. “A 2.5-ns clock access, 250-MHz, 256-Mb SDRAM with synchronous mirror delay,” IEEE JSSC, vol. 31, no. 11, pp. 1656-1668, Nov. 1996.
[23] J. Kim, M. A. Horowitz, and G. Y. Wei, “Design of CMOS adaptive-bandwidth PLL/DLLs : A general approach,” IEEE Transactions on Circuits and Systems II, vol. 50, no. 11, pp.860-869, Nov. 2003.
[24] B. G. Kim, K. I. Oh, L. S. Kim, and D. W. Lee, “A 500MHz DLL with second order duty cycle corrector for low Jitter,” IEEE CICC, pp.325-328, Sept. 2005.
[25] L. Li, J. H. Chen, and R. C. Chang, “A low jitter delay-locked loop with a realignment duty cycle corrector,” IEEE SOCC, pp.73-76, Sept. 2005.
[26] C. Jeong, C. Yoo, J. J. Lee, and J. Kih, “Digital delay locked loop with open-loop digital duty cycle corrector for 1.2Gb/s/pin double data rate SDRAM,”, IEEE ISSCC, pp.379-382, Sept. 2004.
[27] T. H. Lee, K. S. Donnelly, J. T. C. Ho, J. Zerbe, M. G. Johnson, and T. Ishikawa, “A 2.5v CMOS delay-locked loop for an 18 Mbit,500 Megabyte/s DRAM,”, IEEE JSSC, vol. 29, no. 12, pp.1491-1496, Dec. 1994.
[28] Y. J. Jung, S. W. Lee, D. Shim, W. Kim, C. Kim, and S. I. Cho, “A dual-loop delay-locked loop using multiple voltage-controlled delay lines,” IEEE JSSC, vol. 36, no. 5, pp.784-791, May 2001.
[29] Y. J. Jung, S. W. Lee, D. S. Shim, W. C. Kim, C. H. Kim, and S. I. Cho, “Low jitter dual loop DLL using multiple VCDLs with a duty cycle corrector,” IEEE JSSC, vol. 36, no. 5, pp. 784-791, May 2001.
[30] P. K. Hanumolu, B. Casper, R. Mooney, G. Y. Wei, and U. K. Moon, “A analysis of PLL clock jitter in high-speed serial links,” IEEE Transactions on Circuits and Systems II, vol. 50, no. 11, pp.879-886, Nov. 2003
[31] T. Gawa and K. Taniguchi, “A 50% duty-cycle correction circuit for PLL output,” IEEE ISCAS, vol. 4, pp.21-24, May 2002.
[32] A. Tajalli, S. Mehrmanesh, and M. Atarodi, “A duty cycle control circuit for high speed applications,” IEEE ISCAS, vol. 1, pp.781-784, 2004.
[33] Behzad Razavi, “Design of analog CMOS integratied circuits,” McGraw-Hill, 2001.
[34] Phillip Allen and Douglas Holberg, “CMOS analog circuit design,” New York OXFORD, 2002.
[35] David Johns and Ken Martin, “Analog intergrated circuit design,” John Wiley & Sons, 1997.
[36] “http://epsrv.astro.uni.torun.pl/~ep/calculations/microstrip.html,” Microscip line 網站

無法下載圖示 全文公開日期 2012/06/25 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE