簡易檢索 / 詳目顯示

研究生: 唐瑞君
Jui-Chun Tang
論文名稱: 氧化銦鎵鋅與寬能隙材料複合結構之氫氣感測研究
Composite Structures of IGZO-based and Wide Bandgap Hybrid Nanomaterials for H2 Sensing Studies
指導教授: 黃柏仁
Bohr-Ran Huang
口試委員: 周賢鎧
張立
黃柏仁
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 中文
論文頁數: 270
中文關鍵詞: 氧化鋅超奈米鑽石氧化鎵氧化銦鎵鋅氫氣感測器
外文關鍵詞: Zinc oxide, Indium gallium zinc oxide, Ultra-nanocrystalline diamond, Gallium oxide, Hydrogen gas sensor
相關次數: 點閱:414下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究以簡單與低成本的製程技術製備高效能的氫氣感測元件,內文將分為三個部分。第一部分探討氧化銦鎵鋅與超奈米鑽石之氫氣感測及物性分析,接著再探討氧化銦鎵鋅與超奈米鑽石(IGZO/N-UNCD)複合結構之氫氣感測及物性分析。研究發現,超奈米鑽石以7.5 min成長,在500 ppm的氫氣濃度下,響應值為15.9%。而氧化銦鎵鋅在以90 W濺鍍後並經過氮氣退火後處理,在500 ppm的氫氣濃度下,響應值為36.59 %。進一步研究,以90 W濺鍍後並經過氮氣退火後處理之氧化銦鎵鋅結構成長於超奈米鑽石上,在500 ppm的氫氣濃度下,響應值為11.13 %。第二部分則是探討經退火後處理之氧化鋅與氧化銦鎵鋅之氫氣感測及物性分析,以水熱溶液濃度30 mM成長氧化鋅在以90 W濺鍍後並經過氮氣退火後處理之氧化銦鎵鋅結構上,在500 ppm的氫氣濃度下,響應值為61.24 %。接著進行氧化鋅與氧化銦鎵鋅與超奈米鑽石(ZnO/IGZO/N-UNCD)複合結構之氫氣感測及物性分析。
第三部分則是將氧化鋅、氧化銦鎵鋅、氧化鎵與超奈米鑽石(ZnO/IGZO/Ga2O3+N-UNCD)複合,再做氫氣感測及物性分析。此外,針對各結構氫氣感測最好的試片,進行穩定性、重複性及選擇性量測。研究發現,以80 W濺鍍氧化鎵薄膜,在500 ppm的氫氣濃度下,響應值為23.83 %。超奈米鑽石以7.5 min成長並經過500oC氮氣退火後處理,在500 ppm的氫氣濃度下,響應值為43.06%。氧化銦鎵鋅在以90 W濺鍍後並經過氮氣退火後處理成長於氮氣退火700oC超奈米鑽石與氧化鎵複合結構上,在500 ppm的氫氣濃度下,響應值為46.08%。因為奈米片狀結構表面積的增加,表面能快速的解離,使得更多的電子釋放到導帶響應值獲得提升,隨著超奈米鑽石與氧化鎵退火後使得穩定性與衰退性獲得改善。


This study consists of three main parts aimed at developing efficient and cost-effective hydrogen(H2) gas sensing devices. In the first part, the research investigates the H2 gas sensing and physical properties of indium gallium zinc oxide (IGZO), ultra-nanodiamond (N-UNCD) and the composite structure of IGZO and N-UNCD (IGZO/N-UNCD). The results show that N-UNCD, exhibits a response of 15.9 % at a H2 gas concentration of 500 ppm. IGZO subjected to nitrogen(N2) annealing, shows a response of 36.59 % at the same concentration. Further research involves IGZO/ N-UNCD, leading to a response of 11.13% at 500 ppm H2 gas concentration. The second part explores the H2 gas sensing and physical properties of zinc oxide (ZnO)/IGZO and ZnO/IGZO/N-UNCD subjected to N2 annealing. ZnO/IGZO subjected to N2 annealing achieves a high response of 61.24 % at 500 ppm H2 gas concentration. The third part involves combining ZnO, IGZO, gallium oxide (Ga2O3), and N-UNCD for H2 gas sensing and physical property analysis. Additionally, the study assesses the stability, repeatability, and selectivity of the most effective H2 gas sensing samples. Results indicate that Ga2O3 exhibit a response of 23.83 % at 500 ppm H2 gas concentration. N-UNCD annealed in N2 shows a response of 43.06 % at the same concentration. IGZO annealed in N2 at 700°C on Ga2O3/N-UNCD composite structures, achieves a response of 46.08% at 500 ppm H2 gas concentration. The increased surface area of nanosheet-like structures allows for rapid dissociation of surface energy, leading to enhanced electron release into the conduction band and improved response values. The annealing of ultra-nanodiamond and gallium oxide contributes to improved stability and reduced degradation.

摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 XI 表目錄 XXV 第一章 緒論 1 1.1 前言 1 1.2 研究動機 7 第二章 文獻探討 9 2.1 鑽石之材料特性簡介 9 2.1.1 鑽石基本性質及結構 9 2.1.2 超奈米鑽石成長機制 10 2.1.3 奈米結晶鑽石 11 2.2 氧化鋅材料特性簡介 12 2.2.1 氧化鋅基本性質及結構 13 2.2.2 水熱法成長機制 13 2.2.3 VLS法成長機制 14 2.2.4 電化學沉積法 16 2.3 氧化銦鎵鋅(IGZO)材料特性簡介 17 2.4 氧化鎵(Ga2O3)特性簡介 18 2.5 氣體感測器介紹 20 2.5.1 金屬氧化物半導體型氣體感測器 21 2.5.2 化學電阻式氣體感測器 22 2.6 氧化鋅與氫氣感測 23 第三章 實驗方法 26 3.1 實驗設計與流程 26 3.2 使用材料介紹 30 3.3 基板清洗 31 3.4 微波電漿化學氣相沉積法成長超奈米鑽石 31 3.5 磁控薄膜濺鍍系統濺鍍氧化銦鎵鋅薄膜 33 3.6 磁控薄膜濺鍍系統濺鍍氧化鎵薄膜 34 3.7 水熱法(Hydrothermal method)成長氧化鋅 34 3.8 管式高溫爐之後處理 35 3.8.1 大氣(Atmosphere)退火後處理 35 3.8.2 氮氣(N2)退火後處理 37 3.9 儀器設備與材料分析方法 39 3.9.1 場發射掃描式電子顯微鏡 (Scanning Electron Microscope, FE-SEM) 39 3.9.2 拉曼光譜儀(Raman Spectrum) 40 3.9.3 X射線繞射儀(X-ray Diffraction, XRD) 40 3.9.4 X光電子能譜分析儀(X-ray photoelectron spectroscopy,XPS) 42 3.9.5 紫外光-可見光光譜儀(UV-VIS Spectrophotometer) 43 3.9.6 高真空量測系統(Gas Sensor, GS) 44 第四章 氧化銦鎵鋅與超奈米鑽石(IGZO/N-UNCD)複合結構之氫氣感測研究 46 4.1 超奈米鑽石(N-UNCD)之特性分析 46 4.1.1 N-UNCD表面型態分析 46 4.1.2 N-UNCD拉曼光譜儀分析 49 4.1.3 N-UNCD之氫氣感測分析 51 4.1.4 N-UNCD之選擇性分析 53 4.1.5 N-UNCD之氫氣重複性分析 54 4.1.6 N-UNCD之氫氣穩定性分析 55 4.2 氧化銦鎵鋅(IGZO)之特性分析 55 4.2.1 IGZO之表面型態分析 56 4.2.2 IGZO之X-ray繞射儀分析 57 4.2.3 IGZO之紫外光-可見光光譜儀分析 58 4.2.4 IGZO之氫氣感測分析 59 4.3 氧化銦鎵鋅(IGZO)經大氣退火之特性分析 62 4.3.1 IGZO經大氣退火之表面型態分析 62 4.3.2 IGZO經大氣退火之X-ray繞射儀分析 63 4.3.3 IGZO經大氣退火之紫外光-可見光光譜儀分析 64 4.3.4 IGZO經大氣退火之氫氣感測分析 65 4.4 氧化銦鎵鋅(IGZO)經氮氣退火之特性分析 68 4.4.1 IGZO經氮氣退火之表面型態分析 68 4.4.2 IGZO經氮氣退火之X-ray繞射儀分析 69 4.4.3 IGZO經氮氣退火之紫外光-可見光光譜儀分析 70 4.4.4 IGZO經氮氣退火之氫氣感測分析 71 4.4.5 IGZO經氮氣退火之選擇性分析 74 4.4.6 IGZO經氮氣退火之氫氣重複性分析 75 4.4.7 IGZO經氮氣退火之氫氣穩定性分析 75 4.5 [IGZO/N-UNCD]N之複合結構特性分析 76 4.5.1 [IGZO/N-UNCD]N之表面型態分析 77 4.5.2 [IGZO/N-UNCD]N之X-ray繞射儀分析 81 4.5.3 [IGZO/N-UNCD]N之拉曼光譜儀分析 82 4.5.4 [IGZO/N-UNCD]N之紫外光-可見光光譜儀分析 85 4.5.5 [IGZO/N-UNCD]N之X光電子能譜分析儀分析 86 4.5.6 [IGZO/N-UNCD]N之氫氣感測分析 89 4.5.7 [IGZO/N-UNCD]N之選擇性分析 96 4.5.8 [IGZO/N-UNCD]N之氫氣重複性分析 97 4.5.9 [IGZO/N-UNCD]N之氫氣穩定性分析 97 4.6 總結 98 第五章 氧化鋅與氧化銦鎵鋅、超奈米鑽石(ZnO/IGZO/N-UNCD)複合結構之氫氣感測研究 106 5.1 ZnO/(IGZO)A之複合結構特性分析 106 5.1.1 ZnO/(IGZO)A之表面型態分析 107 5.1.2 ZnO/(IGZO)A之X-ray繞射儀分析 111 5.1.3 ZnO/(IGZO)A之拉曼光譜儀分析 113 5.1.4 ZnO/(IGZO)A之紫外光-可見光光譜儀分析 115 5.1.5 ZnO/(IGZO)A之氫氣感測分析 115 5.2 ZnO/(IGZO)N之複合結構特性分析 121 5.2.1 ZnO/(IGZO)N之表面型態分析 122 5.2.2 ZnO/(IGZO)N之X-ray繞射儀分析 126 5.2.3 ZnO/(IGZO)N之拉曼光譜儀分析 128 5.2.4 ZnO/(IGZO)N之紫外光-可見光光譜儀分析 130 5.2.5 ZnO/(IGZO)N之X光電子能譜分析儀分析 131 5.2.6 ZnO/(IGZO)N之氫氣感測分析 135 5.2.7 ZnO/(IGZO)N之選擇性分析 140 5.2.8 ZnO/(IGZO)N之氫氣重複性分析 142 5.2.9 ZnO/(IGZO)N之氫氣穩定性分析 142 5.3 ZnO/[IGZO/N-UNCD]N複合結構之特性分析 143 5.3.1 ZnO/[IGZO/N-UNCD]N之表面型態分析 144 5.3.2 ZnO/[IGZO/N-UNCD]N之X-ray繞射儀分析 148 5.3.3 ZnO/[IGZO/N-UNCD]N之拉曼光譜儀分析 150 5.3.4 ZnO/[IGZO/N-UNCD]N之紫外光-可見光光譜儀分析 153 5.3.5 ZnO/[IGZO/N-UNCD]N之X光電子能譜分析儀分析 154 5.3.6 ZnO/[IGZO/N-UNCD]N之氫氣感測分析 157 5.3.7 ZnO/[IGZO/N-UNCD]N之選擇性分析 164 5.3.8 ZnO/[IGZO/N-UNCD]N之氫氣重複性分析 165 5.3.9 ZnO/[IGZO/N-UNCD]N之氫氣穩定性分析 166 5.4 總結 167 第六章 氧化鋅、氧化銦鎵鋅、氧化鎵與超奈米鑽石(ZnO/IGZO/Ga2O3+N-UNCD)複合結構之氫氣感測研究 175 6.1 Ga2O3退火之特性分析 175 6.1.1 Ga2O3退火之表面型態分析 175 6.1.2 Ga2O3退火之X-ray繞射儀分析 176 6.1.3 Ga2O3退火之拉曼光譜儀分析 178 6.1.4 Ga2O3退火之紫外光-可見光光譜儀分析 179 6.1.5 Ga2O3退火之氫氣感測分析 180 6.1.6 Ga2O3退火之選擇性分析 182 6.1.7 Ga2O3退火之氫氣重複性分析 183 6.1.8 Ga2O3退火之氫氣穩定性分析 184 6.2 N-UNCD退火之特性分析 184 6.2.1 N-UNCD退火之表面型態分析 185 6.2.2 N-UNCD退火之拉曼光譜儀分析 188 6.2.3 N-UNCD退火之氫氣感測分析 190 6.2.4 N-UNCD退火之選擇性分析 192 6.2.5 N-UNCD退火之氫氣重複性分析 193 6.2.6 N-UNCD退火之氫氣穩定性分析 194 6.3 Ga2O3+N-UNCD退火之特性分析 194 6.3.1 Ga2O3+N-UNCD退火之表面型態分析 195 6.3.2 Ga2O3+N-UNCD退火之X-ray繞射儀分析 197 6.3.3 Ga2O3+N-UNCD退火之拉曼光譜儀分析 198 6.3.4 Ga2O3+N-UNCD之紫外光-可見光光譜儀分析 200 6.3.5 Ga2O3+N-UNCD退火之X光電子能譜分析儀分析 201 6.3.6 Ga2O3+N-UNCD退火之氫氣感測分析 204 6.3.7 Ga2O3+N-UNCD退火之選擇性分析 206 6.3.8 Ga2O3+N-UNCD退火之氫氣重複性分析 207 6.3.9 Ga2O3+N-UNCD退火之氫氣穩定性分析 208 6.4 {IGZO/[β-Ga2O3+N-UNCD]N}N複合材料之特性分析 209 6.4.1 {IGZO/[β-Ga2O3+N-UNCD]N}N之表面型態分析 210 6.4.2 {IGZO/[β-Ga2O3+N-UNCD]N}N之X-ray繞射儀分析 213 6.4.3 {IGZO/[β-Ga2O3+N-UNCD]N}N之拉曼光譜儀分析 215 6.4.4 {IGZO/[β-Ga2O3+N-UNCD]N}N之紫外光-可見光光譜儀分析 218 6.4.5 {IGZO/[β-Ga2O3+N-UNCD]N}N之X光電子能譜分析儀分析 219 6.4.6 {IGZO/[β-Ga2O3+N-UNCD]N}N之氫氣感測分析 222 6.4.7 {IGZO/[β-Ga2O3+N-UNCD]N}N之選擇性分析 225 6.4.8 {IGZO/[β-Ga2O3+N-UNCD]N}N之氫氣重複性分析 226 6.4.9 {IGZO/[β-Ga2O3+N-UNCD]N}N之氫氣穩定性分析 227 6.5 ZnO/{IGZO/[β-Ga2O3+N-UNCD]N}N複合材料之特性分析 228 6.5.1 ZnO/{IGZO/[β-Ga2O3+N-UNCD]N}N之表面型態分析 229 6.5.2 ZnO/{IGZO/[β-Ga2O3+N-UNCD]N}N之X-ray繞射儀分析 230 6.5.3 ZnO/{IGZO/[β-Ga2O3+N-UNCD]N}N之拉曼光譜儀分析 233 6.5.4 ZnO/{IGZO/[β-Ga2O3+N-UNCD]N}N之紫外光-可見光光譜儀分析 235 6.5.5 ZnO/{IGZO/[β-Ga2O3+N-UNCD]N}N之氫氣感測分析 236 6.5.6 ZnO/{IGZO/[β-Ga2O3+N-UNCD]N}N之選擇性分析 239 6.5.7 ZnO/{IGZO/[β-Ga2O3+N-UNCD]N}N之氫氣重複性分析 240 6.5.8 ZnO/{IGZO/[β-Ga2O3+N-UNCD]N}N之氫氣穩定性分析 241 6.6 總結 242 第七章 結論與未來展望 250 7.1 結論 250 7.2 未來展望 251 附錄 253 參考文獻 261

[1] Kampa, M., and Castanas, E., 2008, “Human Health Effects of Air Pollution,” Environmental Pollution, 151(2), pp. 362–367.
[2] Zoran, M. A., Savastru, R. S., Savastru, D. M., and Tautan, M. N., 2020, “Assessing the Relationship between Surface Levels of PM2.5 and PM10 Particulate Matter Impact on COVID-19 in Milan, Italy,” Science of The Total Environment, 738, p. 139825.
[3] Chavali, M. S., and Nikolova, M. P., 2019, “Metal Oxide Nanoparticles and Their Applications in Nanotechnology,” SN Appl. Sci., 1(6), p. 607.
[4] Sun, Z., Liao, T., and Kou, L., 2017, “Strategies for Designing Metal Oxide Nanostructures,” Sci. China Mater., 60(1), pp. 1–24.
[5] Goel, N., Kunal, K., Kushwaha, A., and Kumar, M., 2022, “Metal Oxide Semiconductors for Gas Sensing,” Engineering Reports, p. e12604.
[6] Market.us, 2023, “Gas Sensors Market to Reach USD 5,302 Million in 2032 with a CAGR of 7.8%, Report by Market.Us,” GlobeNewswire News Room [Online]. Available: https://www.globenewswire.com/en/news-release/2023/03/21/2631013/0/en/Gas-Sensors-Market-to-Reach-USD-5-302-Million-in-2032-with-a-CAGR-of-7-8-Report-by-Market-us.html. [Accessed: 12-Jun-2023].
[7] Najjar, Y. S. H., 2013, “Hydrogen Safety: The Road toward Green Technology,” International Journal of Hydrogen Energy, 38(25), pp. 10716–10728.
[8] Luo, Y., Zhang, C., Zheng, B., Geng, X., and Debliquy, M., 2017, “Hydrogen Sensors Based on Noble Metal Doped Metal-Oxide Semiconductor: A Review,” International Journal of Hydrogen Energy, 42(31), pp. 20386–20397.
[9] Ihokura, K., and Watson, J., 1994, The Stannic Oxide Gas Sensor: Principles and Applications, CRC Press, Boca Raton.
[10] Ashrafi, A., and Jagadish, C., 2007, “Review of Zincblende ZnO: Stability of Metastable ZnO Phases,” Journal of Applied Physics, 102(7), p. 071101.
[11] He, J., Zheng, X., Hong, X., Wang, W., Cao, Y., Chen, T., Kong, L., Wu, Y., Wu, Z., and Kang, J., 2018, “Enhanced Field Emission of ZnO Nanowire Arrays by the Control of Their Structures,” Materials Letters, 216, pp. 182–184.
[12] Hsu, C.-L., Chang, L.-F., and Hsueh, T.-J., 2016, “A Dual-Band Photodetector Based on ZnO Nanowires Decorated with Au Nanoparticles Synthesized on a Glass Substrate,” RSC Adv., 6(78), pp. 74201–74208.
[13] Electrochemistry Laboratory, Chemistry Institute, Faculty of Sciences, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile., and Burgos, A., 2018, “Electrodeposition of ZnO Nanorods as Electron Transport Layer in a Mixed Halide Perovskite Solar Cell,” Int. J. Electrochem. Sci., pp. 6577–6583.
[14] Kim, H., Pak, Y., Jeong, Y., Kim, W., Kim, J., and Jung, G. Y., 2018, “Amorphous Pd-Assisted H2 Detection of ZnO Nanorod Gas Sensor with Enhanced Sensitivity and Stability,” Sensors and Actuators B: Chemical, 262, pp. 460–468.
[15] Shi, Z.-F., Zhang, Y.-T., Cui, X.-J., Zhuang, S.-W., Wu, B., Chu, X.-W., Dong, X., Zhang, B.-L., and Du, G.-T., 2015, “Photoluminescence Performance Enhancement of ZnO/MgO Heterostructured Nanowires and Their Applications in Ultraviolet Laser Diodes,” Phys. Chem. Chem. Phys., 17(21), pp. 13813–13820.
[16] Yuan, Q., Zhao, Y.-P., Li, L., and Wang, T., 2009, “Ab Initio Study of ZnO-Based Gas-Sensing Mechanisms: Surface Reconstruction and Charge Transfer,” J. Phys. Chem. C, 113(15), pp. 6107–6113.
[17] Kang, Y., Yu, F., Zhang, L., Wang, W., Chen, L., and Li, Y., 2021, “Review of ZnO-Based Nanomaterials in Gas Sensors,” Solid State Ionics, 360, p. 115544.
[18] Wang, Z. L., 2004, “Zinc Oxide Nanostructures: Growth, Properties and Applications,” J. Phys.: Condens. Matter, 16(25), pp. R829–R858.
[19] Panda, K., Sankaran, K. J., Panigrahi, B. K., Tai, N.-H., and Lin, I.-N., 2014, “Direct Observation and Mechanism for Enhanced Electron Emission in Hydrogen Plasma-Treated Diamond Nanowire Films,” ACS Appl. Mater. Interfaces, 6(11), pp. 8531–8541.
[20] Cheng, Y.-W., Lin, C.-K., Chu, Y.-C., Abouimrane, A., Chen, Z., Ren, Y., Liu, C.-P., Tzeng, Y., and Auciello, O., 2014, “Electrically Conductive Ultrananocrystalline Diamond-Coated Natural Graphite-Copper Anode for New Long Life Lithium-Ion Battery,” Advanced Materials, 26(22), pp. 3724–3729.
[21] Birrell, J., Carlisle, J. A., Auciello, O., Gruen, D. M., and Gibson, J. M., 2002, “Morphology and Electronic Structure in Nitrogen-Doped Ultrananocrystalline Diamond,” Appl. Phys. Lett., 81(12), pp. 2235–2237.
[22] Williams, O. A., Curat, S., Gerbi, J. E., Gruen, D. M., and Jackman, R. B., 2004, “N-Type Conductivity in Ultrananocrystalline Diamond Films,” Appl. Phys. Lett., 85(10), pp. 1680–1682.
[23] Bhattacharyya, S., Auciello, O., Birrell, J., Carlisle, J. A., Curtiss, L. A., Goyette, A. N., Gruen, D. M., Krauss, A. R., Schlueter, J., Sumant, A., and Zapol, P., 2001, “Synthesis and Characterization of Highly-Conducting Nitrogen-Doped Ultrananocrystalline Diamond Films,” Appl. Phys. Lett., 79(10), pp. 1441–1443.
[24] Arenal, R., Bruno, P., Miller, D. J., Bleuel, M., Lal, J., and Gruen, D. M., 2007, “Diamond Nanowires and the Insulator-Metal Transition in Ultrananocrystalline Diamond Films,” Phys. Rev. B, 75(19), p. 195431.
[25] Sankaran, K. J., Kurian, J., Chen, H. C., Dong, C. L., Lee, C. Y., Tai, N. H., and Lin, I. N., 2012, “Origin of a Needle-like Granular Structure for Ultrananocrystalline Diamond Films Grown in a N 2 /CH 4 Plasma,” J. Phys. D: Appl. Phys., 45(36), p. 365303.
[26] Saravanan, A., Huang, B.-R., Sankaran, K. J., Tai, N.-H., and Lin, I.-N., 2015, “Highly Conductive Diamond–Graphite Nanohybrid Films with Enhanced Electron Field Emission and Microplasma Illumination Properties,” ACS Appl. Mater. Interfaces, 7(25), pp. 14035–14042.
[27] Eadi, S. B., Shin, H., Nguyen, K. T., Song, K.-W., Choi, H.-W., Kim, S.-H., and Lee, H.-D., 2022, “Indium-Gallium–Zinc Oxide (IGZO) Thin-Film Gas Sensors Prepared via Post-Deposition High-Pressure Annealing for NO2 Detection,” Sensors and Actuators B: Chemical, 353, p. 131082.
[28] “Physics and Technology of Crystalline Oxide Semiconductor CAAC-IGZO: Application to Displays | Wiley,” Wiley.com [Online]. Available: https://www.wiley.com/en-us/Physics+and+Technology+of+Crystalline+Oxide+Semiconductor+CAAC+IGZO%3A+Application+to+Displays-p-9781119247487. [Accessed: 13-Jun-2023].
[29] Kim, Y., Tak, Y. J., Kim, H. J., Kim, W.-G., Yoo, H., and Kim, H. J., 2018, “Facile Fabrication of Wire-Type Indium Gallium Zinc Oxide Thin-Film Transistors Applicable to Ultrasensitive Flexible Sensors,” Sci Rep, 8(1), p. 5546.
[30] Rosa, J., Kiazadeh, A., Santos, L., Deuermeier, J., Martins, R., Gomes, H. L., and Fortunato, E., 2017, “Memristors Using Solution-Based IGZO Nanoparticles,” ACS Omega, 2(11), pp. 8366–8372.
[31] Semple, J., Georgiadou, D. G., Wyatt-Moon, G., Gelinck, G., and Anthopoulos, T. D., 2017, “Flexible Diodes for Radio Frequency (RF) Electronics: A Materials Perspective,” Semicond. Sci. Technol., 32(12), p. 123002.
[32] Chen, P.-L., Liu, I.-P., Chen, W.-C., Niu, J.-S., and Liu, W.-C., 2020, “Study of a Platinum Nanoparticle (Pt NP)/Amorphous In-Ga-Zn-O (A-IGZO) Thin-Film-Based Ammonia Gas Sensor,” Sensors and Actuators B: Chemical, 322, p. 128592.
[33] Ogita, M., Higo, K., Nakanishi, Y., and Hatanaka, Y., 2001, “Ga2O3 Thin Film for Oxygen Sensor at High Temperature,” Applied Surface Science.
[34] Víllora, E. G., Shimamura, K., Yoshikawa, Y., Aoki, K., and Ichinose, N., 2004, “Large-Size β-Ga2O3 Single Crystals and Wafers,” Journal of Crystal Growth, 270(3), pp. 420–426.
[35] Víllora, E. G., Shimamura, K., Kitamura, K., and Aoki, K., 2006, “Rf-Plasma-Assisted Molecular-Beam Epitaxy of β-Ga2O3,” Appl. Phys. Lett., 88(3), p. 031105.
[36] Ohira, S., Yoshioka, M., Sugawara, T., Nakajima, K., and Shishido, T., 2006, “Fabrication of Hexagonal GaN on the Surface of β-Ga2O3 Single Crystal by Nitridation with NH3,” Thin Solid Films, 496(1), pp. 53–57.
[37] Oshima, T., Okuno, T., and Fujita, S., 2007, “Ga2O3 Thin-Film Growth on c-Plane Sapphire Substrates by Molecular Beam Epitaxy for Deep-Ultraviolet Photodetectors,” Jpn. J. Appl. Phys., 46(11), pp. 7217–7220.
[38] Suzuki, R., Nakagomi, S., Kokubun, Y., Arai, N., and Ohira, S., 2009, “Enhancement of Responsivity in Solar-Blind β-Ga2O3 Photodiodes with a Au Schottky Contact Fabricated on Single Crystal Substrates by Annealing,” Appl. Phys. Lett., 94(22), p. 222102.
[39] Nakagomi, S., Kaneko, M., and Kokubun, Y., 2011, “Hydrogen Sensitive Schottky Diode Based on β-Ga2O3 Single Crystal,” Sensor Letters, 9(1), pp. 31–35.
[40] Nakagomi, S., Ikeda, M., and Kokubun, Y., 2011, “Comparison of Hydrogen Sensing Properties of Schottky Diodes Based on SiC and β-Ga2O3 Single Crystal,” Sensor Letters, 9(2), pp. 616–620.
[41] Higashiwaki, M., Sasaki, K., Kuramata, A., Masui, T., and Yamakoshi, S., 2012, “Gallium Oxide (Ga 2 O 3 ) Metal-Semiconductor Field-Effect Transistors on Single-Crystal β-Ga 2 O 3 (010) Substrates,” Appl. Phys. Lett., 100(1), p. 013504.
[42] Yang, J., and Zhang, Y., 2018, “Nanocrystalline Diamond Films Grown by Microwave Plasma Chemical Vapor Deposition and Its Biocompatible Property,” Advances in Materials Physics and Chemistry, 8(4), pp. 157–176.
[43] Rani, R., Kumar, N., Kozakov, A. T., Googlev, K. A., Sankaran, K. J., Das, P. K., Dash, S., Tyagi, A. K., and Lin, I.-N., 2015, “Superlubrication Properties of Ultra-Nanocrystalline Diamond Film Sliding against a Zirconia Ball,” RSC Adv., 5(122), pp. 100663–100673.
[44] Hu, Q., Joshi, R. K., and Kumar, A., 2010, “Electrons Diffusion Study on the Nitrogen-Doped Nanocrystalline Diamond Film Grown by MPECVD Method,” Applied Surface Science, 256(21), pp. 6233–6236.
[45] Ikeda, T., Teii, K., Casiraghi, C., Robertson, J., and Ferrari, A. C., “Effect of the Sp2 Carbon Phase on N-Type Conduction in Nanodiamond FIlms,” J. Appl. Phys.
[46] Lin, C. R., Wei, D. H., BenDao, M. K., Chen, W. E., and Liu, T. Y., 2014, “Development of High-Performance UV Detector Using Nanocrystalline Diamond Thin Film,” International Journal of Photoenergy, 2014, pp. 1–8.
[47] Matsumoto, S., Sato, Y., Kamo, M., and Setaka, N., 1982, “Vapor Deposition of Diamond Particles from Methane,” Jpn. J. Appl. Phys., 21(4A), p. L183.
[48] Gao, F., Zhang, D., Wang, J., Sun, H., Yin, Y., Sheng, Y., Yan, S., Yan, B., Sui, C., Zheng, Y., Shi, Y., and Liu, J., 2016, “Ultraviolet Electroluminescence from Au-ZnO Nanowire Schottky Type Light-Emitting Diodes,” Appl. Phys. Lett., 108(26), p. 261103.
[49] Han, Z., Ren, L., Cui, Z., Chen, C., Pan, H., and Chen, J., 2012, “Ag/ZnO Flower Heterostructures as a Visible-Light Driven Photocatalyst via Surface Plasmon Resonance,” Applied Catalysis B: Environmental, 126, pp. 298–305.
[50] Kim, K.-H., Kumar, B., Lee, K. Y., Park, H.-K., Lee, J.-H., Lee, H. H., Jun, H., Lee, D., and Kim, S.-W., 2013, “Piezoelectric Two-Dimensional Nanosheets/Anionic Layer Heterojunction for Efficient Direct Current Power Generation,” Sci Rep, 3(1), p. 2017.
[51] Solozhenko, V. L., Kurakevych, O. O., Sokolov, P. S., and Baranov, A. N., 2011, “Kinetics of the Wurtzite-to-Rock-Salt Phase Transformation in ZnO at High Pressure,” J. Phys. Chem. A, 115(17), pp. 4354–4358.
[52] Hadis, M., and Özgür, Ü., “Zinc Oxide: Fundamentals, Materials and Device Technology,” Wiley.com [Online]. Available: https://www.wiley.com/en-ie/Zinc+Oxide%3A+Fundamentals%2C+Materials+and+Device+Technology-p-9783527408139. [Accessed: 16-Jun-2023].
[53] Shaikh, S. K., Inamdar, S. I., Ganbavle, V. V., and Rajpure, K. Y., 2016, “Chemical Bath Deposited ZnO Thin Film Based UV Photoconductive Detector,” Journal of Alloys and Compounds, 664, pp. 242–249.
[54] Polsongkram, D., Chamninok, P., Pukird, S., Chow, L., Lupan, O., Chai, G., Khallaf, H., Park, S., and Schulte, A., 2008, “Effect of Synthesis Conditions on the Growth of ZnO Nanorods via Hydrothermal Method,” Physica B: Condensed Matter, 403(19), pp. 3713–3717.
[55] Vergés, M. A., Mifsud, A., and Serna, C. J., 1990, “Formation of Rod-like Zinc Oxide Microcrystals in Homogeneous Solutions,” J. Chem. Soc., Faraday Trans., 86(6), pp. 959–963.
[56] Vayssieres, L., Keis, K., Lindquist, S.-E., and Hagfeldt, A., 2001, “Purpose-Built Anisotropic Metal Oxide Material: 3D Highly Oriented Microrod Array of ZnO,” J. Phys. Chem. B, 105(17), pp. 3350–3352.
[57] Mensah, S. L., Kayastha, V. K., Ivanov, I. N., Geohegan, D. B., and Yap, Y. K., 2007, “Formation of Single Crystalline ZnO Nanotubes without Catalysts and Templates,” Applied Physics Letters, 90(11), p. 113108.
[58] Wagner, R. S., and Ellis, W. C., 1964, “VAPOR‐LIQUID‐SOLID MECHANISM OF SINGLE CRYSTAL GROWTH,” Appl. Phys. Lett., 4(5), pp. 89–90.
[59] Wang, N., Cai, Y., and Zhang, R. Q., 2008, “Growth of Nanowires,” Materials Science and Engineering: R: Reports, 60(1–6), pp. 1–51.
[60] Huang, M. H., Mao, S., Feick, H., Yan, H., Wu, Y., Kind, H., Weber, E., Russo, R., and Yang, P., 2001, “Room-Temperature Ultraviolet Nanowire Nanolasers,” Science, 292(5523), pp. 1897–1899.
[61] Orita, M., Tanji, H., Mizuno, M., Adachi, H., and Tanaka, I., 2000, “Mechanism of Electrical Conductivity of Transparent InGaZnO 4,” Phys. Rev. B, 61(3), pp. 1811–1816.
[62] Hays, D. C., Gila, B. P., Pearton, S. J., and Ren, F., 2017, “Energy Band Offsets of Dielectrics on InGaZnO4,” Applied Physics Reviews, 4(2), p. 021301.
[63] Fortunato, E., Barquinha, P., and Martins, R., 2012, “Oxide Semiconductor Thin-Film Transistors: A Review of Recent Advances,” Adv. Mater., 24(22), pp. 2945–2986.
[64] Lim, W., Kim, S., Wang, Y.-L., Lee, J. W., Norton, D. P., Pearton, S. J., Ren, F., and Kravchenko, I. I., 2008, “High-Performance Indium Gallium Zinc Oxide Transparent Thin-Film Transistors Fabricated by Radio-Frequency Sputtering,” J. Electrochem. Soc., 155(6), p. H383.
[65] Wang, X., Shen, Z., Li, J., and Wu, S., 2021, “Preparation and Properties of Crystalline IGZO Thin Films,” Membranes, 11(2), p. 134.
[66] Yu, E. K.-H., Jun, S., Kim, D. H., and Kanicki, J., 2014, “Density of States of Amorphous In-Ga-Zn-O from Electrical and Optical Characterization,” Journal of Applied Physics, 116(15), p. 154505.
[67] Kumaresan, Y., Kim, H., Jeong, Y., Pak, Y., Cho, S., Lee, R., Lim, N., and Jung, G. Y., 2017, “Ultra-High Sensitivity to Low Hydrogen Gas Concentration With Pd-Decorated IGZO Film,” IEEE Electron Device Lett., 38(12), pp. 1735–1738.
[68] Stallings, K., Smith, J., Chen, Y., Zeng, L., Wang, B., Di Carlo, G., Bedzyk, M. J., Facchetti, A., and Marks, T. J., 2021, “Self-Assembled Nanodielectrics for Solution-Processed Top-Gate Amorphous IGZO Thin-Film Transistors,” ACS Appl. Mater. Interfaces, 13(13), pp. 15399–15408.
[69] Korotcenkov, G., 2019, “Humidity Sensors Based on Thin-Film and Field-Effect Transistors,” Handbook of Humidity Measurement, CRC Press, pp. 257–281.
[70] Chiang, J.-L., Yadlapalli, B. K., Chen, M.-I., and Wuu, D.-S., 2022, “A Review on Gallium Oxide Materials from Solution Processes,” Nanomaterials, 12(20), p. 3601.
[71] Roy, R., Hill, V. G., and Osborn, E. F., 1952, “Polymorphism of Ga2O3 and the System Ga2O3—H2O,” J. Am. Chem. Soc., 74(3), pp. 719–722.
[72] Shen, H., Yin, Y., Tian, K., Baskaran, K., Duan, L., Zhao, X., and Tiwari, A., 2018, “Growth and Characterization of β-Ga2O3 Thin Films by Sol-Gel Method for Fast-Response Solar-Blind Ultraviolet Photodetectors,” Journal of Alloys and Compounds, 766, pp. 601–608.
[73] Pearton, S. J., Yang, J., Cary, P. H., Ren, F., Kim, J., Tadjer, M. J., and Mastro, M. A., 2018, “A Review of Ga 2 O 3 Materials, Processing, and Devices,” Applied Physics Reviews, 5(1), p. 011301.
[74] Chen, X., Ren, F., Gu, S., and Ye, J., 2019, “Review of Gallium-Oxide-Based Solar-Blind Ultraviolet Photodetectors,” Photon. Res., 7(4), p. 381.
[75] Åhman, J., Svensson, G., and Albertsson, J., 1996, “A Reinvestigation of β-Gallium Oxide,” Acta Crystallogr C Cryst Struct Commun, 52(6), pp. 1336–1338.
[76] Higashiwaki, M., Sasaki, K., Murakami, H., Kumagai, Y., Koukitu, A., Kuramata, A., Masui, T., and Yamakoshi, S., 2016, “Recent Progress in Ga 2 O 3 Power Devices,” Semicond. Sci. Technol., 31(3), p. 034001.
[77] Miyata, T., Nakatani, T., and Minami, T., 2000, “Gallium Oxide as Host Material for Multicolor Emitting Phosphors,” Journal of Luminescence, 87–89, pp. 1183–1185.
[78] Irmscher, K., Galazka, Z., Pietsch, M., Uecker, R., and Fornari, R., 2011, “Electrical Properties of β -Ga2O3 Single Crystals Grown by the Czochralski Method,” Journal of Applied Physics, 110(6), p. 063720.
[79] Ma, X., Zhang, Y., Dong, L., and Jia, R., 2017, “First-Principles Calculations of Electronic and Optical Properties of Aluminum-Doped β-Ga2O3 with Intrinsic Defects,” Results in Physics, 7, pp. 1582–1589.
[80] Seiyama, T., Kato, A., Fujiishi, K., and Nagatani, M., 1962, “A New Detector for Gaseous Components Using Semiconductive Thin Films.,” Anal. Chem., 34(11), pp. 1502–1503.
[81] Asri, M. I. A., Hasan, Md. N., Fuaad, M. R. A., Yunos, Y. Md., and Ali, M. S. M., 2021, “MEMS Gas Sensors: A Review,” IEEE Sensors Journal, 21(17), pp. 18381–18397.
[82] Wang, C., Yin, L., Zhang, L., Xiang, D., and Gao, R., 2010, “Metal Oxide Gas Sensors: Sensitivity and Influencing Factors,” Sensors (Basel), 10(3), pp. 2088–2106.
[83] Hassanzadeh, N., Omidvar, H., and Tabaian, S. H., 2012, “Chemical Synthesis of High Density and Long Polypyrrole Nanowire Arrays Using Alumina Membrane and Their Hydrogen Sensing Properties,” Superlattices and Microstructures, 51(3), pp. 314–323.
[84] D’Amico, A., Palma, A., and Verona, E., 1982, “Surface Acoustic Wave Hydrogen Sensor,” Sensors and Actuators, 3, pp. 31–39.
[85] Kathiravan, D., Huang, B.-R., and Saravanan, A., 2017, “Self-Assembled Hierarchical Interfaces of ZnO Nanotubes/Graphene Heterostructures for Efficient Room Temperature Hydrogen Sensors,” ACS Appl. Mater. Interfaces, 9(13), pp. 12064–12072.
[86] Gu, H., Wang, Z., and Hu, Y., 2012, “Hydrogen Gas Sensors Based on Semiconductor Oxide Nanostructures,” Sensors, 12(5), pp. 5517–5550.
[87] Wagner, C., 1950, “The Mechanism of the Decomposition of Nitrous Oxide on Zinc Oxide as Catalyst,” The Journal of Chemical Physics, 18(1), pp. 69–71.
[88] Comini, E., Faglia, G., Sberveglieri, G., Pan, Z., and Wang, Z. L., 2002, “Stable and Highly Sensitive Gas Sensors Based on Semiconducting Oxide Nanobelts,” Appl. Phys. Lett., 81(10), pp. 1869–1871.
[89] 謝昕容, 2022, “氧化鋅與寬能隙材料複合結構之氫氣感測研究,” 國立臺灣科技大學.
[90] Patterson, A. L., 1939, “The Scherrer Formula for X-Ray Particle Size Determination,” Phys. Rev., 56(10), pp. 978–982.
[91] Ferrari, A. C., and Robertson, J., 2001, “Origin of the 1 1 5 0 − Cm − 1 Raman Mode in Nanocrystalline Diamond,” Phys. Rev. B, 63(12), p. 121405.
[92] You, J. B., Zhang, X. W., Zhang, S. G., Tan, H. R., Ying, J., Yin, Z. G., Zhu, Q. S., and Chu, P. K., 2010, “Electroluminescence Behavior of ZnO/Si Heterojunctions: Energy Band Alignment and Interfacial Microstructure,” Journal of Applied Physics, 107(8), p. 083701.
[93] Weiss, C. V., Zhang, J., Spies, M., Abdallah, L. S., Zollner, S., Cole, M. W., and Alpay, S. P., 2012, “Bulk-like Dielectric Properties from Metallo-Organic Solution–Deposited SrTiO3 Films on Pt-Coated Si Substrates,” Journal of Applied Physics, 111(5), p. 054108.
[94] Wahab, R., Ahmad, N., and Alam, M., 2020, “Silicon Nanoparticles: A New and Enhanced Operational Material for Nitrophenol Sensing,” J Mater Sci: Mater Electron, 31(19), pp. 17084–17099.
[95] Dey, P. P., Kesarwani, R., and Khare, A., 2018, “Efficacy of Raman Mapping over Ellipsometric Spectroscopy and XRD for Characterization of Structurally Heterogeneous PLD Nc-Si Thin Films,” Optical Materials, 84, pp. 221–226.
[96] Rao, Z., Du, B., Huang, C., Shu, L., Lin, P., Fu, N., and Ke, S., 2019, “Revisit of Amorphous Semiconductor InGaZnO4: A New Electron Transport Material for Perovskite Solar Cells,” Journal of Alloys and Compounds, 789, pp. 276–281.
[97] Chen, Y.-T., Hung, F.-Y., Chang, S.-J., Lui, T.-S., and Chen, L.-H., 2012, “Microstructural Characteristics of InGaZnO Thin Film Using an Electrical Current Method,” Mater. Trans., 53(4), pp. 733–738.
[98] Everaerts, K., Zeng, L., Hennek, J. W., Camacho, D. I., Jariwala, D., Bedzyk, M. J., Hersam, M. C., and Marks, T. J., 2013, “Printed Indium Gallium Zinc Oxide Transistors. Self-Assembled Nanodielectric Effects on Low-Temperature Combustion Growth and Carrier Mobility,” ACS Appl. Mater. Interfaces, 5(22), pp. 11884–11893.
[99] Saravanan, A., Huang, B.-R., and Kathiravan, D., 2018, “Hierarchical Morphology and Hydrogen Sensing Properties of N2-Based Nanodiamond Materials Produced through CH4/H2/Ar Plasma Treatment,” Applied Surface Science, 457, pp. 367–375.
[100] 游鈞如, 2021, “氧化鋅奈米柱摻雜石墨相氮化碳與高能隙薄膜材料複合結構之氫氣感測研究,” 國立臺灣科技大學.
[101] Sen, A., Park, H., Pujar, P., Bala, A., Cho, H., Liu, N., Gandla, S., and Kim, S., 2022, “Probing the Efficacy of Large-Scale Nonporous IGZO for Visible-to-NIR Detection Capability: An Approach toward High-Performance Image Sensor Circuitry,” ACS Nano, 16(6), pp. 9267–9277.
[102] Li, X., Yang, J.-G., Ma, H.-P., Liu, Y.-H., Ji, Z.-G., Huang, W., Ou, X., Zhang, D. W., and Lu, H.-L., 2020, “Atomic Layer Deposition of Ga2O3/ZnO Composite Films for High-Performance Forming-Free Resistive Switching Memory,” ACS Appl. Mater. Interfaces, 12(27), pp. 30538–30547.
[103] Sharma, A., Karuppasamy, K., Vikraman, D., Cho, Y., Adaikalam, K., Korvink, J. G., Kim, H.-S., and Sharma, B., 2022, “Metal Organic Framework-Derived ZnO@GC Nanoarchitecture as an Effective Hydrogen Gas Sensor with Improved Selectivity and Gas Response,” ACS Appl. Mater. Interfaces, 14(39), pp. 44516–44526.
[104] Kang, Y., Lee, S., Sim, H., Sohn, C. H., Park, W. G., Song, S. J., Kim, U. K., Hwang, C. S., Han, S., and Cho, D.-Y., 2014, “The Impact of Orbital Hybridization on the Electronic Structure of Crystalline InGaZnO: A New Perspective on the Compositional Dependence,” J. Mater. Chem. C, 2(43), pp. 9196–9204.
[105] Jeong, H.-J., Kim, Y.-S., Jeong, S.-G., and Park, J.-S., 2022, “Impact of Annealing Temperature on Atomic Layer Deposited In–Ga–Zn–O Thin-Film Transistors,” ACS Appl. Electron. Mater., 4(3), pp. 1343–1350.
[106] Ma, S., Huang, Y., Hong, R., Lu, X., Li, J., and Zheng, Y., 2021, “Enhancing Photocatalytic Activity of ZnO Nanoparticles in a Circulating Fluidized Bed with Plasma Jets,” Catalysts, 11(1), p. 77.
[107] Xu, H., Fan, W., Rosa, A. L., Zhang, R. Q., and Frauenheim, Th., 2009, “Hydrogen and Oxygen Adsorption on ZnO Nanowires: A First-Principles Study,” Phys. Rev. B, 79(7), p. 073402.
[108] Erdogan, D. A., Sevim, M., Kısa, E., Emiroglu, D. B., Karatok, M., Vovk, E. I., Bjerring, M., Akbey, Ü., Metin, Ö., and Ozensoy, E., 2016, “Photocatalytic Activity of Mesoporous Graphitic Carbon Nitride (Mpg-C3N4) Towards Organic Chromophores Under UV and VIS Light Illumination,” Top Catal, 59(15), pp. 1305–1318.
[109] Jin, C., Park, S., Kim, H., and Lee, C., 2012, “Ultrasensitive Multiple Networked Ga2O3-Core/ZnO-Shell Nanorod Gas Sensors,” Sensors and Actuators B: Chemical, 161(1), pp. 223–228.
[110] Huang, Y., Yue, S., Wang, Z., Wang, Q., Shi, C., Xu, Z., Bai, X. D., Tang, C., and Gu, C., 2006, “Preparation and Electrical Properties of Ultrafine Ga2O3 Nanowires,” J. Phys. Chem. B, 110(2), pp. 796–800.
[111] Wang, Y., Li, N., Duan, P., Sun, X., Chu, B., and He, Q., 2015, “Properties and Photocatalytic Activity of β -Ga 2 O 3 Nanorods under Simulated Solar Irradiation,” Journal of Nanomaterials, 2015, pp. 1–5.
[112] Yang, D. J., Whitfield, G. C., Cho, N. G., Cho, P.-S., Kim, I.-D., Saltsburg, H. M., and Tuller, H. L., 2012, “Amorphous InGaZnO4 Films: Gas Sensor Response and Stability,” Sensors and Actuators B: Chemical, 171–172, pp. 1166–1171.
[113] Park, S., Kim, H., Jin, C., and Lee, C., 2012, “Synthesis, Structure, and Room-Temperature Gas Sensing of Multiple-Networked Pd-Doped Ga2O3 Nanowires,” Journal of the Korean Physical Society, 60(10), pp. 1560–1564.
[114] Niu, J.-S., Chen, P.-L., Chang, C.-W., Tsai, J.-H., Lin, K.-W., Hsu, W.-C., and Liu, W.-C., 2023, “Hydrogen Detecting Characteristics and an Improved Algorithm for Data Transmission of a Palladium Nanoparticle/Amorphous InGaZnO Thin Film Based Sensor,” Sensors and Actuators B: Chemical, 377, p. 133091.
[115] Mohammad, S. M., Hassan, Z., Talib, R. A., Ahmed, N. M., Al-Azawi, M. A., Abd-Alghafour, N. M., Chin, C. W., and Al-Hardan, N. H., 2016, “Fabrication of a Highly Flexible Low-Cost H2 Gas Sensor Using ZnO Nanorods Grown on an Ultra-Thin Nylon Substrate,” J Mater Sci: Mater Electron, 27(9), pp. 9461–9469.
[116] Lupan, O., Postica, V., Pauporté, T., Viana, B., Terasa, M.-I., and Adelung, R., 2019, “Room Temperature Gas Nanosensors Based on Individual and Multiple Networked Au-Modified ZnO Nanowires,” Sensors and Actuators B: Chemical, 299, p. 126977.

無法下載圖示
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE