簡易檢索 / 詳目顯示

研究生: 陳厚甫
Ho-fu Chen
論文名稱: 二氧化鈦與親水性Silicone Polyester摻合物之光觸媒效果
The photocatalytic effect of blended TiO2 with hydrophilic Silicone Polyester
指導教授: 陳耿明
Keng-ming Chen
口試委員: 劉興鑑
Sing-jian Liu
王英靖
Ying-jing Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 68
中文關鍵詞: 磷酸鈣光觸媒親水性聚乙二醇矽氧烷聚酯薄膜
外文關鍵詞: Calcium phosphate, Photocatalyst, PEG Silicone Polyester, Film
相關次數: 點閱:441下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究是利用磷酸鈣部份包覆光觸媒製備成類似多層構造的複合物,再與不同分子量 PEG 鏈段之 PEG Silicone Polyester 黏著劑,混掺成聚合物,藉以塗佈於基材上,可延緩因光觸媒直接接觸所引發光催化劣解反應,及具有除臭、抗菌及防污效果。以 x-Ray 繞射儀分析晶體結構,結果顯示:光觸媒為銳鈦礦型。以光散射粒徑儀(DLS)與穿透式電子顯微鏡(TEM)分析,結果顯示:光觸媒粒徑約為5~10nm,而磷酸鈣部份包覆光觸媒複合物平均粒徑為375nm。使用亞甲基藍做為光催化降解物,分析各種光源波長之降解速率,經紫外-可見光散射吸收光譜儀(UV/Vis)測試,結果顯示:其降解速率反應,以藍光與紫外光反應速率較佳。以傅立葉(FTIR)與拉曼(Raman)紅外線光譜分析儀,觀察掺合物薄膜,經不同時間UV光(Blacklight,360nm × 1mw/cm2)照射後的分子結構變化中,結果顯示:-OH羥基、-COOH 羧酸基,隨照射時間增加,其3403cm-1之波長吸收峰會逐漸變為寬而強,且會往高頻移動。由此可知:掺合物薄膜經UV光照射後有 -OH 羥基與 -COOH 羧酸基官能基形成。以掃描式電子顯微鏡(SEM)分析掺合物薄膜表面形態與粗糙度,分析經不同時間UV光照射後,檢視掺合物薄膜表面形態之變化。綜合以上結果得知,磷酸鈣部份包覆光觸媒只有部分光觸媒與基材直接接觸,而使用PEG Silicon Polyester 黏著劑因含矽化合物,不易被光觸媒分解,可有效延緩基材發生光催化劣解反應。


This study is to use a calcium phosphate partially covered by a photocatalyst to make a multilayer-like structure compound. Afterwards, it is blended with binders having different molecular PEG segments of PEG Silicone Polyester to be blending polymers. They are used as a coating on the matrix. Therefore, it will delay the reaction of the photocatalytic degradation on the matrix oweing to the direct contact of photocatalyst and have the effects of antibacterial, de-odour and soil-resistance. The results show that the photocatalyst is a sharp titanium ore by the analysis of crystal structure in the x-Ray diffraction measurement. Through the analysis of DLS and TEM, we get the results that the particle sizes are from 5nm to 10nm, and the particle size of the calcium phosphate covered by the photocatalyst compound is 375nm. The methylene blue is used as a photocatalyst degradation material to analyse the degradation speeds in different light sources. Through the measurement of UV/Vis, the results show that the reactive speeds of blue and ultraviolet lights are better in the reaction of degradation speed. FTIR and Raman spectra help us analyze the molecular structure after UV light irradiation. All evidences show that -OH and -COOH groups increase with increasing irradiation time and its absorption peak at 3403cm-1 becomes wide and strong gradually. From the results, we can get that the -OH and -COOH groups will be formed when the film of the blending is irradiated by a UV light. It also shifts to a higher frequency position. The appearance and roughness of the blending membrane surface are analysed in different UV irradiation times by SEM. From above results, we can know that the photocatalyst covered by the calcium phosphate can avoid the direct contact between the photocatalyst and the matrix. And because the PEG Silicone Polyester adhensive contains a silicone compound, it is not easy to be degraded by a photocatalyst and can effectively delay the happening of the photocatalytic degradation in a matrix.

摘要........................................................................... ABSTRACT....................................................................... 致謝........................................................................... 目錄........................................................................... 圖目錄......................................................................... 表目錄......................................................................... 一、緒論....................................................................... 1.1 前言................................................................... 1.2 研究目的............................................................... 二、實驗....................................................................... 2.1 合成原料............................................................... 2.2 試藥................................................................... 2.3 主要試驗設備........................................................... 2.4 實驗方法............................................................... 2.4.1 親水性聚乙二醇矽氧烷樹脂製備..................................... 2.4.1.1 分子結構確認............................................. 2.4.2 光觸媒之製備..................................................... 2.4.2.1 四氯化鈦解離............................................. 2.4.2.2 過氧化氫解膠............................................. 2.4.2.3 磷酸鈣部份包覆光觸媒之製備............................... 2.4.3 光觸媒與PEG Silicone Polyester摻合物薄膜製備..................... 2.4.3.1 摻合物薄膜製作過程....................................... 2.4.4 PEG Silicone Polyester掺合物薄膜對光分解性能分析................. 2.4.4.1 UV光源照射標準........................................... 2.4.4.2 摻合物薄膜性質分析....................................... 三、結果與討論................................................................. 3.1 PEG Silicone Polyester合成與構造分析.................................. 3.1.1 合成............................................................. 3.1.2 分子量結果(OH末端基測定法)..................................... 3.1.3 分子構造之確認................................................... 3.2 光觸媒結構分析......................................................... 3.2.1 x-Ray繞射分析.................................................... 3.2.2 光觸媒與磷酸鈣部份包覆光觸媒複合物粒徑分析....................... 3.2.2.1 光散射粒徑儀............................................. 3.2.2.2 穿透式電子顯微鏡(TEM)分析.............................. 3.3 光觸媒之性質探討....................................................... 3.3.1 光觸媒於各種光源之催化效果比較................................... 3.3.1.1 試驗條件................................................. 3.3.1.2 LED光源光波長分佈....................................... 3.3.1.3 各種光照吸收結果......................................... 3.4 不同PEG Silicone Polyester摻合物薄膜結構變化........................... 3.4.1 掺合物薄膜外觀及表面型態......................................... 3.4.2 紅外線光譜分析.................................................. 3.4.2.1 產物Ⅰ摻合物薄膜經不同時間UV照射後FTIR光譜............... 3.4.2.2 產物Ⅱ摻合物薄膜經不同時間UV照射後FTIR光譜............... 3.4.2.3 產物Ⅲ摻合物薄膜經不同時間UV照射後FTIR光譜............... 3.4.2.4 產物ⅠⅡⅢ摻合物薄膜經不同時間UV照射後Raman光譜.......... 3.4.3 掃描電子顯微鏡(SEM)薄膜表面分析................................ 3.4.3.1 PVA薄膜表面經UV照射0、12hr結果........................... 3.4.3.2 Polyester掺合物薄膜經UV照射0hr結果....................... 3.4.3.3 Polyester掺合物薄膜經UV照射12hr結果...................... 3.4.3.4 SEM薄膜觀察結果.......................................... 3.5 磷酸鈣部份包覆光觸媒濾材DeNOx測試...................................... 3.5.1 測試條件........................................................ 3.5.2 試驗結果........................................................ 3.6 磷酸鈣包覆光觸媒濾材DeHCHO測試......................................... 3.6.1 測試條件........................................................ 3.6.2 試驗結果........................................................ 3.7 磷酸鈣包覆光觸媒塗佈纖維抗菌測試....................................... 3.7.1 測試條件........................................................ 3.7.2 試驗結果........................................................ 四、結論....................................................................... 五、附錄....................................................................... 5.1 光觸媒之基本原理....................................................... 5.2 二氧化鈦之晶體結構..................................................... 5.3 半導體光催化反應原理................................................... 5.4 二氧化鈦溶液在溶膠-凝膠法(Sol-gel)之應用............................. 參考文獻....................................................................... 作者介紹.......................................................................

1.張晶、楊健,光觸媒圖解,第43頁,台北,商周出版,民國92。
2.結晶型二氧化鈦光觸媒合成方法,台灣案號92122034,泉耀公司,民國92。
3.高吸附型二氧化鈦奈米粉粒溶液合成方法,台灣案號,92128954,泉耀公司,民國92。
4.可見光型二氧化鈦奈米粉體溶膠合成方法,台灣案號,93102131,泉耀公司,民國93。
5.高濂、鄭珊、張青紅、陳憲偉,奈米光觸媒,第47~ 51頁、第83~95頁,台北,
五南圖書出版公司,民國93。
6.D.F.Ollis,E.Pelizzetti,N.Serpone,Environ.Sci.Technol.,25,1523-1529 (1991).
7.W.Noll,"Chemistry and Technology of Silicones", Acadenic Press, New York
(1968).
8.M.V.Beylen,M.Bolke,S,Bywater,E.Franta,P.Hallpap,J.E.Herz,G.Heublein, J, E.
McGrath, P. Rempp, G, Smets, M. Szwarz, D. J. Worsfold, and
I .Yilgor, "Polysiloxane Copolymers/Anionic", adv. Polym. Soi.,
Springer-Verfah Berlin Heidelberg, pp.30 (1988).
9.U.S Pattent 3,919,438.
10.D.R. Karsa, “Chemistry applications of surfactants”pp.25~31 ( 1986 ).
11.J. M.Zigler ( Ed. ), and F. W. Gordon Fearon ( Ed. ), “Silicone Based
Polymer Science, A Comprehesive Resource”, Advance in Chemistry Series,
224,American Chemistry Society, Washington, pp.91 ( 1990 ).
12.W. R. Sorenson & T. W. Campbell, “Prepartive methods of polymer
chemistry”, New York, Interscience Pub. pp.154~155 (1968).
13.程雲琦,「分散型矽界劑之合成及界面性質研究」P.1~10,
國立台灣科技大學纖維及高分子研究所碩士論文(1997)。
14.Hsin-Jiant Liu,Li-Huei Lin,Keng-Ming Chen, Journal of Applied Polymer
Science, Vol.86,3005-3011(2002).
15.Aegerter,M. A., Jafelicci, M., Souza, D. F., Zanotto, Sol-Gel Science
and Technology, 1989.
16.Qian, Y., Chen, Z., Fan, C. and Zhou, G., Preparation of Ultra Poeders of
TiO2 by Hydrothermal H2O2 Oxidation Starting form Metallic Ti, J. Mater.
Chem.,1993, 3, pp.203-205.
17.Richardson S. D., Thruston A. D., Collette T. M., Patterson K. S., Lykins
B. W. and Ireland J.C., Identification of TiO2/UV Disinfection by-Products
in Drinking-Water, Environ. Sci. Technol., 1996, 30, pp.3327-3334.
18.Bischoff, B. L., Anderson, M. A., Peptization Process in Sol-Gel
Preparation of Porous Anatase ( TiO2 ), Chem.Master., 1995,7, pp.1772-1778
19.蔣乃允,納米二氧化鈦透明結晶膜之製作及光催化應用,碩士學位論文,
國立中央大學化學工程研究所,1999。
20.董俊興,經摻雜之二氧化鈦觸媒膜光分解性質之研究,碩士學位論文,
國立中央大學化學工程研究所,2001。
21.蔣孝測,溶凝膠製作與應用專輯,化工,1999, 46 (5), pp.12-15.
22.徐清彬,二氧化鈦薄膜的性質和結構分析與光觸媒行為,碩士學位論文,
國立東華大學材料科學與工程研究所,2003。
23.翁暢健,壓克力/二氧化鈦複合材料的製備與性質研究,碩士學位論文,
中原大學化學系,2002。

無法下載圖示
全文公開日期 本全文未授權公開 (校外網路)

QR CODE