簡易檢索 / 詳目顯示

研究生: 林宜蓁
Yi-Jen Lin
論文名稱: 微型混煉機顆粒均勻度最佳加工參數及異常參數辨識之研究
A Study on Optimal Processing Parameters and Fault Parameters Identification for Particle Uniformity in a Micro Compounder
指導教授: 黃昌群
Chang-Chiun Huang
口試委員: 郭中豐
Chung-Feng Kuo
湯燦泰
Tsann-tay Tang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 106
中文關鍵詞: 低密度聚乙烯球形二氧化矽均勻度田口方法層級分析法支撐向量機微型混煉機
外文關鍵詞: LDPE, SiO2, Uniformity, Taguchi Method, AHP, SVM, Micro Compounder
相關次數: 點閱:238下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用微型混煉機探討低密度聚乙烯與球形二氧化矽兩種材料混煉之最佳均勻度加工參數,並藉由混煉時之扭力、黏度及剪力三數據辨識正常與異常參數。經由多項文獻得知,二氧化矽顆粒對於塑料有增強性能之作用,且顆粒在塑料中之均勻度越佳時機械性質有越優良的表現,而現今研究人員在探討材料之均勻度時,皆僅以平均粒徑或SEM分析其均勻度,主觀給予其結論,能有公正與客觀的給予定義是非常重要的議題。研究為了解決此問題,將均勻度分為分布度及分散度兩項品質做分析,藉由EDS之檢測並利用變異係數評估分布度;藉由SEM之圖譜以表面效應及比表面公式評估分散度,再以田口方法之直交表設計實驗組,經由變異分析獲得單品質最佳加工參數,最後利用層級分析法獲得多品質最佳參數組,經過信賴區間測試及最後多品質加工參數之結果,可以驗證本研究中所使用的分布度及分散度公式具有成效。最後將多品質最佳參數做為標準參數做單項因子上的水準變動,經由支撐向量機辨識異常參數與最佳參數,最終能從其直接辨識加工參數有無異常,而省去檢測品質之成本。


    This thesis investigates optimal parameters of comprehensive quality of mixing of Low Density Polyethylene (LDPE) and Spherical Silica Powder (SiO2) in a micro compounder, and to Identify the faults of parameter by the melt viscosity, screw torque and shear stress data during mixing. Through a number of literatures, it is known that SiO2 have an effect of enhancing mechanical performance of plastics, and the better the uniformity of the SiO2 particles in plastics, the better the mechanical performance. Nowadays, when investigating the uniformity of materials, researchers only analyze the uniformity by average particle size or SEM. Nowadays, when investigating the uniformity of materials, researchers only analyze the uniformity by average particle size or SEM. Researchers subjectively give their conclusions. It is very important to have a fair and objective definition. In this thesis, the uniformity is divided into two categories: distribution and dispersion. Distribution is evaluated by coefficient of variation and the data of EDS. Dispersion is evaluated by specific surface formula and the photos of SEM. Firstly, using the Taguchi's orthogonal arrays to design experiment group, the best quality parameter combination is obtained through the Analysis of Variance (ANOVA) and F-test. Secondly, founding the optimal parameters of comprehensive quality by using the Analytic Hierarchy Process (AHP). After the confidence interval test result and the final uniformity performance, it can be known that the distribution and dispersion formula used in this thesis is effective. Thirdly, changing of the single factor from optimal parameters of comprehensive quality, and investigating the relationship between online data during the mixing and the parameters. Finally, the abnormal parameters are distinguished from the normal parameters by the Support Vector Machine (SVM). From the result, we can directly exclude the defective products of abnormality of the processing parameters and omit the cost of detecting the quality.

    目錄 摘要 ................................ ................................ ................................ ............ I ABSTRACT ................................ ................................ ............................ II 致謝 ................................ ................................ ................................ ......... IV 目錄 ................................ ................................ ................................ ........... V 圖目錄 ................................ ................................ ................................ ..... IX 表目錄 ................................ ................................ ................................ ... XIIXIIXII 第一章 緒論 ................................ ................................ .......................... 1 1.1 前言 ................................ ................................ .............................. 1 1.2 文獻回顧 ................................ ................................ ...................... 2 1.2.1 奈米二氧化矽於複合材料之表現 .......................................2 1.2.2 奈米粒子均勻程度於機械性質的影響 ...............................3 1.2.3 顆粒於塑料中分布與分散之定義 .......................................5 1.2.4 顆粒於塑料中均勻度評估方式 ...........................................6 1.2.5 混煉製程參數與扭矩、黏度及剪力之關係 .......................7 1.2.6 支撐向量機於異常辨識之研究 ...........................................8 1.3 研究動機與目的 研究動機與目的 ................................ ................................ .......... 9 1.4 論文研究流程 論文研究流程 ................................ ................................ ............ 11 第二章 實驗設備與材料 ................................ ................................ ... 12 VI 2.1 材料介紹 ................................ ................................ ................... 12 2.1.1 低密度聚乙烯 .................................................................... 12 2.1.2 球形二氧化矽粉體 ............................................................ 14 2.2 加工設備 ................................ ................................ ................... 15 2.3 材料分析儀器 ................................ ................................ ........... 17 2.3.1 熱重損失分析儀 ................................................................ 17 2.3.2 熱示差分析儀 .................................................................... 18 2.3.3 白金濺鍍機 ........................................................................ 20 2.3.4 掃描式電子顯微鏡 ............................................................ 21 2.3.5 能量分散光譜儀 ................................................................ 22 第三章 研究理論 ................................ ................................ ............... 24 3.1均勻度理論基礎 ................................ ................................ .......... 25 3.1.1 變異係數應用於分布度分析 .............................................. 25 3.1.2 比表面應用於分散度分析 .................................................. 26 3.2田口方法 ................................ ................................ ...................... 28 3.2.1 控制因子及水準 .................................................................. 29 3.2.2 實驗直交表 .......................................................................... 29 3.2.3 訊號雜訊比 .......................................................................... 30 3.2.4因子效應、反應表及反應圖 ............................................... 31 VII 3.2.5變異分析 ............................................................................... 32 3.2.6 信賴區間 .............................................................................. 35 3.3 層級分析法 ................................ ................................ .................. 37 3.3.1 層級與要素 .......................................................................... 38 3.3.2 評估尺度 .............................................................................. 40 3.3.3 AHP的進行步驟與運算方法 ........................................... 41 3.4 支撐向量機 ................................ ................................ .................. 44 第四章 實驗規劃及結果討論 ................................ ........................... 48 4.1 材料分析 ................................ ................................ ...................... 48 4.1.1 低密度聚乙烯分析結果 .................................................... 48 4.1.2 球形二氧化矽分析結果 .................................................... 50 4.2均勻度最佳化 ................................ ................................ .............. 52 4.2.1 田口實驗規劃及實驗結果 .................................................. 52 4.2.2 層級分析結果 ...................................................................... 66 4.3 混煉數據與異常參數分析 ................................ .......................... 70 4.3.1 異常參數組 .......................................................................... 71 4.3.2 特徵值及樣本數 .................................................................. 73 4.3.3異常參數辨識結果 ............................................................... 80 第五章 結論 ................................ ................................ ....................... 82 VIII 參考文獻 ................................ ................................ ................................ . 85

    參考文獻
    [1]
    陳振平,Poly(fluorene-co-pyridine)/金奈米顆粒之奈米複合材料的合成與性質分析,國立交通大學材料科學與工程學系碩士論文,2006。
    [2]
    L. G. Ester, S. A. Cristina, J. I. Velasco and A. R. Miguel, “Low density polyethylene/silica nanocomposite foams. Relationship between chemical composition, particle dispersion, cellular structure and physical properties”, European polymer journal, Vol. 81, pp.173-185, 2016.
    [3]
    B. K. Deka and T. K. Maji, “Effect of silica nanopowder on the properties of wood flour/polymer composite”, Polymer engineering and science, Vol. 52, pp.1516-1523, 2012.
    [4]
    S. H. Lee, M. Kontopoulou and C. B. Park, “Effect of nanosilica on the co-continuous morphology of polypropylene / polyolefin elastomer blends”, Polymer, Vol. 51, pp.1147-1155, 2010.
    [5]
    V. Vladimirov, C. Betchev, A. Vassiliou, G. Papageorgiou and D. Bikiaris, “Dynamic mechanical and morphological studies of isotactic polypropylene/fumed silica nanocomposites with enhanced gas barrier properties”, Composites science and technology, Vol. 66, pp.2935-2944, 2006.
    [6]
    Y. Y. Wang, C. Wang, Z. X. Zhang and K. Xiao, “Anti-thermal aging properties of low-density polyethylene-based nanocomposites”, IEEE Trans. Dielectr. Electr. Insul., Vol. 25, pp.1003-1013, 2018.
    [7]
    K. Kim, D. Jung, J. Han and J. Kim, “Mechanical property enhancement of water soluble polymer via PVP/LDPE blend and SiO2 composite”, Polymer-Korea, Vol. 42, pp.8-12, 2018.
    [8]
    S. B. Ghafarizadeh, M. F. Frechette and E. David, “Fabrication and dielectric, mechanical, and thermal properties of low-density polyethylene (LDPE) composites containing surface-passivated silicon (Si/SiO2 core/shell nanoparticles)”, Polymer-plastics technology and engineering, Vol. 57, pp.327-334, 2018.
    [9]
    H. Assaedi, F. U. A. Shaikh and I. M. Low, “Influence of mixing methods of nano silica on the microstructural and mechanical properties of flax fabric reinforced geopolymer composites”, Construction and building materials, Vol. 123, pp.541-552, 2016.
    [10]
    D. M. Qi, C. H. Liu, Z. J. Chen, G. F. Dong and Z. H. Cao, “In situ emulsion copolymerization of methyl methacrylate and butyl acrylate in the presence of SiO2 with various surface coupling densities”, Colloid and polymer science, Vol. 293, pp.463-471, 2015.
    [11]
    李秉然,“聚烯烴/耐隆摻合物之製備與應用”,高分子工業,33期,pp.69-78,1991。
    [12]
    A. Bher, R. Auras and C. E. Schvezov, “Improving the toughening in poly (lactic acid) ‐thermoplastic cassava starch reactive blends”, Journal of applied polymer science, Vol. 135, Iss. 15, 2017.
    [13]
    K. Bula and T. Jesionowski, “Effect of polyethylene functionalization on mechanical properties and morphology of pe/sio2 composites”, Composite interfaces, Vol. 17, pp.603-614, 2010.
    [14]
    H. H. Redhwi, M. N. Siddiqui, A. L. Andrady and S. Hussain, “Durability of LDPE nanocomposites with clay, silica, and zinc oxide—part I: mechanical properties of the nanocomposite materials”, Polymer composites, Vol. 34, pp.1878-1883, 2013.
    [15]
    Y. P. Zheng, Y. Zheng and R. C. Ning, “Effects of nanoparticles SiO2 on the performance of nanocomposites”, Materials letters, Vol. 57, pp.2940-2944, 2003.
    [16]
    S. F. Hu, “Studies of nano-particles CaCO3 filled PVC/CPE composites”, Plastindia, Vol. 28, pp.14-18, 2000.
    [17]
    D. Panaitescu, F. Ciuprina, M. Iorga, A. Frone, C. Radovici, M. Ghiurea, S. Sever and I. Plesa, “Effects of SiO2 and Al2O3 nanofillers on polyethylene properties”, Journal of applied polymer science, Vol. 122, pp.1921-1935, 2011.
    [18]
    R. Jeziórska, B. Świerz‐Motysia, M. Zielecka, A. Szadkowska and M. Studziński, “Structure and mechanical properties of low‐density polyethylene/spherical silica nanocomposites prepared by melt mixing: The joint action of silica's size, functionality, and compatibilizer”, Journal of applied polymer science, Vol. 125, pp.4326-4337, 2012.
    [19]
    M. Gale, “Compounding with single‐screw extruders”, Advances in polymer technology, Vol. 16, pp.251-262, 1997.
    [20]
    D. F. Chang, Y. F. Huang, G. Tang, J. H. Huang and W. J. Huang, “The mechanical and tribological properties of grafted LDPE-filled SiO2/PTFE composite”, Journal of thermoplastic composite materials, Vol. 27, pp.783-792, 2012.
    [21]
    J. Shojaeiarani, D. S. Bajwa and N. M. Stark, “Spin-coating: a new approach for improving dispersion of cellulose nanocrystals and mechanical properties of poly (lactic acid) composites”, Carbohydrate polymers, Vol. 190, pp.139-147, 2018.
    [22]
    A. Dashtizadeh, M. Abdouss, H. Mahdavi and M. Khorassani, “Acrylic coatings exhibiting improved hardness, solvent resistance and glossiness by using silica nano-composites”, Applied surface science, Vol. 257, pp.2118-2125, 2011.
    [23]
    E. Sasimowski, J. W. Sikora and B. Królikowski, “Effectiveness of polyethylene extrusion in a single-screw grooved feed extruder”, Polimery, Vol. 59, pp.505-510, 2014.
    [24]
    P. H. M. Elemans, P. W. P. V. Bleiman and H. J. Winkelhorst, “Effects of using preheated pellets in corotating twin‐screw extruders”, Polymer engineering and science, Vol. 45, pp.728-732, 2005.
    [25]
    S. K. Isac and K. E. George, “Reactive processing of polyethylenes on a single screw extruder”, Journal of applied polymer science, Vol. 81, pp.2545-2549, 2001.
    [26]
    A. Kumar, J. Dhondt, J. Vercruysse, F. D. Leersnyder, V. Vanhoorne, C. Vervaet, J. P. Remon, K. V. Gernaey, T. D. Beer and I. Nopens, “Development of a process map: a step towards a regime map for steady-state high shear wet twin screw granulation”, Powder technology, Vol. 300, pp.73-82, 2016.
    [27]
    D. E. Crawford, S. L. James and T. McNally, “Use of batch mixing to investigate the continuous solvent-free mechanical synthesis of OLED materials by twin-screw extrusion (TSE)”, ACS sustainable chemistry and engineering, Vol. 6, pp.193-201, 2018.
    [28]
    J. Wang, L. Yu, F. W. Xie, L. Chen, X. X. Li and H. S. Liu, “Rheological properties and phase transition of cornstarches with different amylose/amylopectin ratios under shear stress”, Starch, Vol. 62, pp.667-675, 2010.
    [29]
    J. Vercruysse, U. Delaet, I. V. Assche, P. Cappuyns, F. Arata, G. Caporicci, T. D. Beer, J. P. Remon and C. Vervaet, “Stability and repeatability of a continuous twin screw granulation and drying system”, European journal of pharmaceutics and biopharmaceutics, Vol. 85, pp.1031-1038, 2013.
    [30]
    R. M. Dhenge, J. J. Cartwright, D. G. Doughty, M. J. Hounslow and A. D. Salman, “Twin screw wet granulation: effect of powder feed rate”, Advanced powder technology, Vol. 22, pp.162-166, 2011.
    [31]
    Z. S. Luo, Y. Q. Xu and Q. Y. Ye, “Effect of nano-SiO2-LDPE packaging on biochemical, sensory, and microbiological quality of pacific white shrimp penaeus vannamei during chilled storage”, Fisheries science, Vol. 81, pp.983-993, 2015.
    [32]
    J. E. Christiansen, “The uniformity of application of water by sprinkler systems”, Agricultural engineering, Vol. 22, pp.89-92, 1941.
    [33]
    T. Kara, E. Ekmekci and M. Apan, “Determining the uniformity coefficient and water distribution characteristics of some sprinklers”, Pakistan journal of biological sciences, Vol. 11, pp.214-219, 2008.
    [34]
    馬振基,“奈米材料科技原理與應用”,全華圖書股份有限公司,ISBN:9789864633890,2017。
    [35]
    S. S. Ray and M. Okamoto, “Polymer/layered silicate nanocomposites: a review from preparation to processing”, Progress in polymer science, Vol. 28, pp.1539-1641, 2003.
    [36]
    T. Tanaka, “Dielectric nanocomposites with insulating properties”, IEEE Trans. Dielectr. Electr. Insul., Vol. 12, pp.914-928, 2005.
    [37]
    李輝煌,“田口方法-品質設計的原理與實務”,高立圖書有限公司,ISBN:9789864125593,2008。
    [38]
    傅兆章、黃煒能、黃煒盛、李國維,“科技管理-基礎策略與實務”,全華圖書股份有限公司,ISBN:9789572188347,2013。
    [39]
    謝劍斌、興軍亮、張立甯、方宇強、李沛秦、劉通、閆瑋、王勇、沈傑、張政、譚筠、胡俊,“改變未來20年最重要的20個視覺機器學習理論深讀”,佳魁資訊股份有限公司,ISBN:9789863793434,2016。
    [40]
    R. V. Sharon and T. J. Moir, “Comparison of multiclass svm classification techniques in an audio surveillance application under mismatched conditions”, IEEE, pp.83-88, 2014。
    [41]
    L. Nanni, Y. M. G. Costa, D. R. Lucio, C. N. Silla Jr. and S. Brahnam, “Combining visual and acoustic features for audio classification tasks”, Pattern recognition letters, Vol. 88, pp.49-56, 2017.
    [42]
    A. R. Hilal, A. Sayedelahl, A. Tabibiazar, M. S. Kamel and O. A. Basir, “A distributed sensor management for large-scale IoT indoor acoustic surveillance”, Future generation computer systems, Vol. 86, pp.1170-1184, 2018.
    [43]
    D. Patel, N. G. Chothani, K. D. Mistry and M. Raichura, “Design and development of fault classification algorithm based on relevance vector machine for power transformer”, IEEE, Vol. 12, pp.557-565, 2018.
    [44]
    S. S. Soman and C. M. R. Madhuranthakam, “Effects of internal geometry modifications on the dispersive and distributive mixing in static mixers”, Chemical engineering and processing: process intensification, Vol. 122, pp.31-43, 2017.
    [45]
    M. Yousfi, S. Alix, M. Lebeau, J. Soulestin, M. F. Lacrampe and P. Krawczak, “Evaluation of rheological properties of non-Newtonian fluids in micro rheology compounder: Experimental procedures for a reliable polymer melt viscosity measurement”, Polymer Testing, Vol. 40, pp.207-217, 2014.

    無法下載圖示 全文公開日期 2023/08/23 (校內網路)
    全文公開日期 2038/08/23 (校外網路)
    全文公開日期 2038/08/23 (國家圖書館:臺灣博碩士論文系統)
    QR CODE