簡易檢索 / 詳目顯示

研究生: 陳世政
Shih-Cheng Chen
論文名稱: 氯離子於水泥主要成分相與卜作嵐材料的吸附行為
Adsorption of Chloride Ions on Major Cement Phases and Pozzolanic Materials
指導教授: 陳君弢
Chun-Tao Chen
口試委員: 張大鵬
李釗
王韡蒨
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 175
中文關鍵詞: 氯離子吸附卜特蘭水泥卜作嵐材料
外文關鍵詞: Chloride ion, Adsorption, Portland cement, Pozzolanic materials
相關次數: 點閱:381下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討卜特蘭水泥主要成分相及卜作嵐材料的氯離子吸附行為。首先合成水泥的主要成分相,包含C3S、C2S、C3A、C4AF以及水泥的水化產物鈣礬石,接著量測其與卜作嵐材料浸泡氯化鈉溶液時的氯離子濃度改變,最後計算其吸附之氯離子總量。研究結果發現,氯離子的吸附行為與水泥主要成分之水化速度有相關,水化速度較快者,於前期之氯離子吸附情形較為明顯,表示水化可有效吸附氯離子。增加氯化鈉溶液之濃度,可有效提高其吸附之速率,但於單位重量下,化合物之吸附氯離子總量維持不變,表示提高氯化鈉溶液濃度,只能提升氯離子吸附速率,不能增加其氯離子吸附量。卜作嵐材料如飛灰、爐石等的吸附氯離子總量相當低,說明添加卜作嵐材料於水泥時,氯離子的吸附行為仍由卜特蘭水泥所主導。


    This study explored the adsorption of the chloride ion on the major phases of the Portland cement and the pozzolanic materials. During the study, the major phases of the Portland cement, such as C3S、C2S、C3A、C4AF, and the hydrated phase of ettringite were prepared and immersed in the NaCl solution. Both the changes in the chloride ion concentration and the weight of the specimens were measured so the amount of the adsorption was calculated. Results showed that the adsorption was related to the rate of hydration. The phases that hydrate fast had high adsorption, suggesting that the hydration of the phases effectively induced adsorption. It was also shown that the rate of adsorption was effectively increased by increasing the concentration of the NaCl solution. However, the total adsorption per unit weight remained unchanged, suggesting that only the rate of adsorption rather than the total adsorption was increased by the increased NaCl concentration in the solution. Finally, it was found that the pozzolanic materials had low adsorption. In the presence of the pozzolanic materials, the adsorption of the chloride was supposed to be governed by the Portland cement.

    總目錄 摘要 I ABSTRACT II 誌謝 III 總目錄 IV 圖目錄 IX 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 2 1.3 研究方法與流程 2 第二章 文獻回顧 4 2.1 水泥 4 2.1.1 水泥的組成 4 2.1.2 水泥水化行為 4 2.2 水泥主要成分相 7 2.2.1 C4AF 7 2.2.2 C3A 8 2.2.3 C3S 9 2.2.4 C2S 10 2.2.5 石膏 10 2.3 水泥水化產物 11 2.3.1 鈣礬石 11 2.4 卜作嵐材料 12 2.4.1 飛灰 12 2.4.2 爐石 13 2.5 氯離子 14 2.5.1 混凝土中的氯離子來源 14 2.5.2 氯離子型態 14 2.6 氯離子含量檢測 15 2.7 氯離子與鋼筋腐蝕關係 17 2.7.1 鋼筋腐蝕之定義 17 2.7.2 鋼筋受氯離子腐蝕之機制 17 2.7.3 氯離子侵入鋼筋混凝土之途徑 19 2.7.4 氯離子對鋼筋腐蝕之影響性 21 第三章 試驗計畫 33 3.1 試驗材料 33 3.1.1 鋁鐵酸四鈣 33 3.1.2 矽酸三鈣 34 3.1.3 矽酸二鈣 34 3.1.4 鋁酸三鈣 35 3.1.5 卜作嵐材料 36 3.1.6 藥品 36 3.2 試驗變數 38 3.3 合成試驗 39 3.3.1 鋁酸三鈣合成試驗 39 3.3.2 矽酸三鈣合成試驗 39 3.3.3 矽酸二鈣合成試驗 40 3.3.4 鋁鐵酸四鈣合成試驗 40 3.2.5 鈣礬石合成試驗 41 3.4 比重試驗 41 3.5 比表面積分析(BET) 42 3.6 粒徑分析 42 3.7 氯離子含量分析 42 3.8 掃描式電子顯微鏡分析(SEM) 44 3.9 X光繞射分析儀分析(XRD) 45 3.10 五噸動態試驗機 46 3.11 其他試驗器材與儀器 46 第四章 結果分析與討論 65 4.1 前言 65 4.2 前期試驗 65 4.3 氯離子吸附總量及速率 68 4.4 氯化鈉溶液濃度對氯離子吸附之影響 71 4.5 試樣重量對氯離子吸附的影響 72 4.6 氯離子吸附之型態比較 72 4.7 試樣吸附氯離子後之微觀分析 75 4.8 水化熱對化合物之氯離子吸附影響 79 第五章 結論與建議 158 5.1 結論 158 5.2 建議 159 參考文獻 160 附錄A 各試樣EDS之峰值強度圖 164

    [1]ACI-222R-01 (2001). Protection of metals in concrete against corrosion.

    [2]ACI-318-08 (2008). Building code requirements for structural concrete and
    commentary.

    [3]Basile, F., S. Biagini, G. Ferrari and M. Collepardi (1987). "Effect of the
    gypsum state in industrial cements on the action of superplasticizers." Cement
    and Concrete Research 17(5): 715-722.

    [4]Breval, E. (1977). "Gas-phase and liquid-phase hydration of C3A." Cement and
    Concrete Research 7(3): 297-303.

    [5]Duncan, J , Hayakawa, S , Osaka , A , MacDonald J.F., Hanna J.V., J.M.S.
    Skakle , I.R. Gibson (2014). "Furthering the understanding of silicate-
    substitution in a-tricalcium phosphate: An X-ray diffraction, X-ray
    fluorescence and solid-state nuclear magnetic resonance study." Acta
    Biomaterialia: 1443-1450.

    [6]Elakneswaran, Y., T. Nawa and K. Kurumisawa (2009). "Zeta potential study
    of paste blends with slag." Cement and Concrete Composites 31(1): 72-76.

    [7]ELGA (2007). Purelab classic operator manual. UK.

    [8]EN-206-1 (2000). "Concrete - Part 1: Specification, performance, production
    and conformity."

    [9]Gunasekara, C., D. W. Law, S. Setunge and J. G. Sanjayan (2015). "Zeta
    potential, gel formation and compressive strength of low calcium fly ash
    geopolymers." Construction and Building Materials 95: 592-599.

    [10]Ichikawa, M. I., J.; and Komukai, Y. (1992). Study of the Color Change of
    Ferrite Phase. Reviews, 46th General Meeting, Cement Association of Japan.

    [11]Kadri, E. H., S. Aggoun and G. De Schutter (2009). "Interaction between C3A,
    silica fume and naphthalene sulphonate superplasticiser in high performance
    concrete." Construction and Building Materials 23(10): 3124-3128.
    [12]Kirby, D. M. and J. J. Biernacki (2012). "The effect of water-to-cement ratio
    on the hydration kinetics of tricalcium silicate cements: Testing the two-step
    hydration hypothesis." Cement and Concrete Research 42(8): 1147-1156.

    [13]Mindess, S. and J. F. Young (1981). Concrete. Englewood Cliffs London:
    30- 65.

    [14]Pennell, J. F. (1986). Variations in Properties of Clinker as a Function of
    Particle Size,. Proceedings of the 8th International Conference on Cement
    Microscopy, International Cement Microscopy Association.

    [15]Plank, J. and C. Hirsch (2007). "Impact of zeta potential of early cement
    hydration phases on superplasticizer adsorption." Cement and Concrete
    Research 37(4): 537-542.

    [16]Pliego-Cuervo, Y. B. and F. P. Glasser (1979). "The role of sulphates in cement
    clinkering reactions:Phase formation in the system CaO-AC203-Fe203-SiO2-
    CaSO,-K2SO." Cement and Concrete Research 9: 573-581.

    [17]Rasheeduzzafar, S. Ehtesham Hussain, S.S. Al-Saadoun(1991). “Effect of
    cement composition on corrosion of reinforcing steel in concrete”, Cement and
    Concrete Research, No.21, pp.777-794.

    [18]Rose, J., A. Bénard, S. El Mrabet, A. Masion, I. Moulin, V. Briois, L. Olivi
    and J. Y. Bottero (2006). "Evolution of iron speciation during hydration of
    C4AF." Waste Management 26(7): 720-724.

    [19]Scrivener, K. L., and Taylor, H.F.W. (1995). "Clinker Nodules with Light-
    Coloured Centers." Zement-Kalk-Gips No. 1: 35-39.

    [20]Uchikawa, H. (1992). Advances in Physico-Chemical Characterization and
    Quality Control Techniques for Cement and Concrete. 9th International
    Congress on the Chemistry of Cement.
    [21]Wesselsky, A , O. M. J. (2009). "Synthesis of pure Portland cement phases."
    Cement and Concrete Research: 973-980

    [22]Yoshioka, K., E.-i. Tazawa, K. Kawai and T. Enohata (2002). "Adsorption
    characteristics of superplasticizers on cement component minerals." Cement
    and Concrete Research 32(10): 1507-1513.

    [23]周勇敏 (2014). "矿化剂硫酸钙和氟化钙作用下硅酸三钙的合成." Journal
    of the chimess ceramic society 42: 601-606.

    [24]陳振川 (1987). "飛灰與爐石混凝土性質與其工程應用." 結構工程 第二
    卷(第四期): 第87-94頁.

    [25]黃立遠 (2010). 飛灰基無機聚合物工程性質及應用之硏究 博士論文,
    國立台灣科技大學.

    [26]詹穎雯 (1986). 環境溫、濕度對含高爐石、飛灰與普通波特蘭水泥混凝
    土強度之影響與變形之研究 碩士論文.國立台灣大學.

    [27]賴正義 (1994). "高飛灰量混凝土性質." 台電工程月刊 第551期.

    [28]沈柏翰 (1998). 水泥基材添加滲透移動型腐蝕抑制劑對其抗壓強度及腐
    蝕行為影響之研究 碩士論文.國立台灣海洋大學.

    [29]陳世耀 (1996). 氯離子在混凝土中行為之研究 碩士論文.國立中央大學.

    [30]簡志峰 (2013). 鎂鋁氧化物及類水滑石對氯離子吸附行為之研究 碩士
    論文.國立中央大學.

    [31]周妏璘 (2012). 不同離子濃度下C3A-石膏-鈣礬石的強塑劑吸附及流變
    行為 碩士論文.國立台灣科技大學.

    [32]薛鈺龍 (2015). C3S、C2S及C4AF水泥熟料漿吸附強塑劑之行為及流變
    性質之影響 碩士論文.國立台灣科技大學.

    [33]廖瑋晴 (2016). 不同鐵鋁比C4AxFy漿體吸附羧酸基強塑劑特性及流變
    性質之關係 碩士論文.國立台灣科技大學.

    [34]張建智 (2005). 以粒料表面積及裹漿厚度模式設計高性能混凝土並探
    討其工程性質 碩士論文.國立台灣科技大學.

    [35]張大鵬 (1994). "海砂及砂漿試體之工程性質." 混凝土摻用海砂之策略
    及檢測技術研討會論文輯:Ⅳ-1~Ⅳ-25.

    [36]黃兆龍 (1994). "混凝土中氯離子含量檢測方法評論." 混凝土摻用海砂
    之策略及檢測技術研討會論文輯:Ⅵ-1~Ⅵ-15.

    [37]林維明(1995). 鋼筋混凝土結構物腐蝕調查研究 港灣技術研究所.

    無法下載圖示 全文公開日期 2023/08/16 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE