簡易檢索 / 詳目顯示

研究生: 蔡佳和
Chia-Ho Tsai
論文名稱: 在IEEE 802.15.7可見光無線個人區域網路下延伸競爭週期並結合保證時槽之研究
Study on Extended Contention Access Period (ECAP) with Guaranteed Time Slot in IEEE 802.15.7 VPAN
指導教授: 黎碧煌
Bih-Hwang Lee
口試委員: 陳俊良
Jiann-Liang Chen
吳傳嘉
Chwan-Chia Wu
鍾添曜
Tein-Yaw Chung
吳槐桂
Huai-Kuei Wu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 58
中文關鍵詞: 可見光通訊個人區域網路可見光通訊IEEE 802.15.7
外文關鍵詞: VPAN, VLC, IEEE 802.15.7
相關次數: 點閱:224下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

可見光通訊個人區域網路(Visible-Light Communication Personal Area Network; VPAN)是利用光的特性來傳遞訊號,而在科技的高速發展下也使得可見光通訊(Visible-Light Communication; VLC)成為可以實現的技術。可見光個人區域網路的裝置必須隨著涵蓋範圍增大而隨之增加。然而,大量的密集配置裝置將會提高傳輸時的碰撞率,使得有效產能降低與延遲時間上升。
而在通訊協定方面,IEEE 802.15.7標準所定義之CSMA/CA機制在網路負載流量較低的環境中,會具有較高的傳輸效率。負載增加時,此種機制也會帶來傳輸時的碰撞機率上升,因此造成有效產能大量下降與延遲時間大幅提升。此外在IEEE 802.15.7標準之中,定義了免競爭週期,使得裝置可以使用保證時槽來進行資料傳送,但是保證時槽以時槽為單位使得破碎週期隨著超碼框級數增加,此種方式大幅降低了保證時槽使用率。
為了解決上述的問題,本論文提出了一種修改超碼框結構的方式,延伸了IEEE 802.15.7標準之中的競爭週期,並且針對不同優先權之訊號資料使用不同的傳輸方式,以達到有效的降低CSMA/CA所帶來的延遲時間,此外,讓保證時槽用單位後退週期來切割,降低免競爭週期的頻寬浪費。由模擬結果發現,無論是高優先權的延遲時間、有效產能或者保證時槽使用率均比IEEE 802.15.7標準的機制有較好的表現。


Visible-Light Communication Personal Area Network (VPAN) is using the characteristics of light to transmit signals, and Visible-Light Communication (VLC) can be achieved technology in the rapid development of technology. The device of the visible personal area network must be increased as the coverage increases. However, a large number of devices will increase the probability of transmission collision, and this is the main cause to decrease entire network goodput and increase delay time.
In the communication protocol, IEEE 802.15.7 standard defined the CSMA / CA mechanism will have higher transmission efficiency in the low traffic load. However, when the network device and the traffic load increase, CSMA / CA mechanism will increase the probability of transmission collision, it making a significant decrease in the goodput and a significant increase in delay time. In addition, in the IEEE 802.15.7 standard defined contention-free period (CFP) so that the device can use the guaranteed time slot (GTS) for data transmission, but GTS is using slot for unit, it makeing broken period increase with the vale of superframe oder (SO) gradually increase. This method will decrease GTS utilization.
In order to solve the above problems, this paper presents a way to modify the structure of the super-code frame, extending the competition period in the IEEE 802.15.7 standard, and using different transmission methods for different priority signal data to achieve effective reduction CSMA / CA brought about by the delay time. In addition, let GTS use the unit backoff period (UBP).In simulation results we found the delay time of high priority, good put and GTS utilization are better than IEEE 802.15.7 standard.

摘要 i Abstract vii 誌謝 iv 目次 v 圖目次 vii 表目次 ix 第一章 緒論 1 1.1簡介 1 1.2研究動機與目的 2 1.3章節摘要 3 第二章 IEEE 802.15.7 標準概述 4 2.1 IEEE 802.15.7 標準簡介 4 2.1.1 IEEE 802.15.7標準之網路拓樸結構 5 2.1.2實體層 6 2.1.3媒體存取控制副層 10 2.1.4超碼框結構 13 2.1.5載波偵測多重存取/碰撞避免機制 (CSMA/CA機制) 14 2.1.6保證時槽分配 17 2.1.7資料傳輸模型 20 2.1.8訊框格式 25 2.2相關研究 32 第三章 研究方法 34 3.1系統基本架構 34 3.2廣播機制 36 3.3延伸競爭週期 (EXTEND CAP) 37 3.4協調者之流程 38 3.5裝置之流程 39 3.6保證時槽分配機制 41 3.6.1訊框格式修改 41 3.6.2保證時槽分配規範 42 第四章 系統模擬與結果分析 44 4.1模擬環境及參數設定 44 4.2效能評估項目 45 4.2.1產能 (Throughput) 45 4.2.2有效產能 (Goodput) 45 4.2.3平均訊框丟棄率 (Average frame drop ratio) 46 4.2.4平均傳輸延遲時間 (Average delay per frame) 46 4.2.5保證時槽使用率 (Guaranteed time slot utilization) 46 4.3模擬結果分析與比較 47 4.3.1產能(Throughput)的分析與比較 47 4.3.2有效產能(Throughput)的分析 49 4.3.3平均訊框丟棄率(Average frame drop ratio)的分析 50 4.3.4平均傳輸延遲時間 (Average delay per frame)的分析 51 4.3.5保證時槽使用率 (Guaranteed time slot utilization)的分析 53 第五章 結論與未來研究 55 參考文獻 56

[1] Alin-Mihai Cailean; Mihai Dimian, “Impact of IEEE 802.15.7 Standard on Visible Light Communications Usage in Automotive Applications,” IEEE Communications Magazine, Vol. 55, Issue. 4, pp. 169 – 175, April 2017
[2] Shun-Hsiang Yu; Oliver Shih; Hsin-Mu Tsai, “Smart Automotive Lighting for Vehicle Safety” IEEE Communications Magazine, vol. 51, no. 12, pp. 50–59, Dec. 2013
[3] A. Cailean; B. Cagneau; L. Chassagne; S. Topsu; Y. Alayli and J-M; Blosseville, “Visible Light Communications: Application to Cooperation Between Vehicles and Road Infrastructures,” IEEE Intelligent Vehicles Symposium, pp. 1055 - 1059, 2012
[4] Takaya Yamazato; Isamu Takai; Hiraku Okada; Toshiaki Fujii; Tomohiro Yendo; Shintaro Arai; Michinori Andoh; Tomohisa Harada; Keita Yasutomi; Keiichiro Kagawa; Shoji Kawahito, “Image-Sensor-Based Visible Light Communication for Automotive Applications,” IEEE Communications Magazine,, vol. 52, no. 7, pp. 88–97, July 2014.
[5] Alin-Mihai Căilean; Barthélemy Cagneau; Luc Chassagne; Mihai Dimian; Valentin Popa, “Novel Receiver Sensor for Visible Light Communications in Automotive Applications,” IEEE Sensors Journal, vol. 15, no. 8, pp. 4632 - 4639, Aug. 2015
[6] Alessio Bellè; Mariano Falcitelli; Matteo Petracca; Paolo Pagano, “Development of IEEE802.15.7 based ITS Services Using Low Cost Embedded Systems,”13th International Conference on ITS Telecommunications (ITST), pp. 419–25, Nov. 2013
[7] http://nextgenlite.com/lighting-discussio/
[8] T. Komine; M. Nakagawa, “Fundamental Analysis for Visible-Light Communication System using LED Lights,” IEEE Transactions Consumer Electronics, vol. 50, no. 1, pp. 100–107, Feb. 2004
[9] M. Kavehrad, “Sustainable Energy-Efficient Wireless Applications Using Light,” IEEE Communication Magazine, vol. 48, no. 12, pp. 66–73, Dec. 2010
[10] Carlos Ley-Bosch; Itziar Alonso-González; David Sánchez-Rodríguez; Miguel A. Quintana-Suárez “Analysis of the effects of the hidden node problem in IEEE 802.15.7 uplink performance,” I2015 International Conference on Computer, Information and Telecommunication Systems (CITS), pp. 1 – 5, 2015
[11] Sina Khoshabi Nobar; Kamal Adli Mehr; Javad Musevi Niya, “Comprehensive performance analysis of IEEE 802.15.7 CSMA/CA mechanism for saturated traffic” vol. 7, Issue: 2 pp. 62 – 73, 2015
[12] Hoa Le Minh “100-Mb/s NRZ Visible Light Communications Using a Postequalized White LED,” IEEE Transactions Photonics Technology Letter, vol. 21, no. 15, pp. 1063–1065, Aug. 2009
[13] IEEE 802.15.7 Standard for Local and Metropolitan area networks.(2011). Part 15.7: Short-range Wireless Optical Communication UsingVisible Light.
[14] S. Rajagopal; R. D. Roberts; S.-K. Lim, “IEEE 802.15.7 Visible Light Communication: Modulation Schemes and Dimming Support,” IEEE Communication Magazine, vol. 50, pp.72 – 82, March 2012
[15] http://www.cra.org.tw/download/GetD.aspx?12
[16] Y. F. Liu; Y. C. Chang; C. W. Chow; C. H. Yeh, “Equalization and pre-distorted schemes for increasing data rate in in-door visible light communication system,” Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, pp.1-3, 2011
[17] R. Severino; M. Batsa; M. Alves; A. Koubaa, “A Traffic Differentiation Add-On to the IEEE 802.15.4 Protocol: Implementation and Experimental Validation over a Real-Time Operating system,” 2010 13th Euromicro Conference on Digital System Design: Architectures, Methods and Tools (DSD), pp.501-508, Sept. 2010
[18] L. Cheng; A.G. Bourgeois; X. Zhang, “A new GTS allocation scheme for IEEE 802.15.4 networks with improved bandwidth utilization,” Communications and Information Technologies, pp.1143-1148, Oct. 2007
[19] Junho Hwang; Tronghop Do; Myungsik Yoo”Performance Analysis on MAC Protocol Based on Beacon-enabled Visible Personal Area Network”, Ubiquitous and Future Networks (ICUFN) , 2013 Fifth International Conference on, pp. 384 - 388 July 2013
[20] 賴品君,「IEEE 802.15.7用於智慧電網家庭區域網路之訊號服務品質研究」,碩士論文,國立臺灣科技大學,臺北市,2014

QR CODE