簡易檢索 / 詳目顯示

研究生: 楊欣螢
Hsin-Ying Yang
論文名稱: 過渡金屬修飾管狀氧化鈰觸媒應用於二氧化碳轉化反應
The carbon dioxide conversion of transition-metal-doped into CeO2 nanotubes
指導教授: 林昇佃
Shawn D. Lin
口試委員: 劉端祺
Tuan Chi Liu
江志強
Jyh Chiang Jiang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 115
中文關鍵詞: 氧化鈰奈米管氧空缺CO2脫氧反應
外文關鍵詞: Cerium oxide nanotubes, Oxygen vacancies, CO2 conversion
相關次數: 點閱:374下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究利用水熱法製備具有氧空缺之管狀CeO2觸媒進行CO2脫氧反應,並以不同金屬前驅物(In、Zr、Gd)修飾的管狀CeO2觸媒進行比較討論。從TPR-TPO-TPR連續反應之實驗結果可得知,所有樣品都含有不可逆和可逆的H2消耗,其中可逆的H2消耗主要發生在600℃以上。另外,由BET的分析結果得知氧化鈰表面積大小為影響不可逆氧空缺之數量。以pulse方式在700℃進行CO2脫氧反應,並探討觸媒結構對CO2脫氧反應持續性。所有觸媒的CO2起始轉化率皆可達到100%,但經過幾次的CO2 pulse脫氧反應後,可以明顯地發現CO2轉化率趨近於零,顯示還原後CeO2的氧空缺確實可以分解CO2生成CO,並且在氧空缺抓滿CO2中的氧後,即無法再繼續進行CO2 pulse脫氧反應。其中,以摻雜5% Zr金屬前驅物修飾的管狀CeO2觸媒,CO2 pulse脫氧反應持續性最佳,可歸因於(1) 高溫下結構穩定佳;(2) Zr金屬與CeO2進行摻雜混合時,由於不同金屬離子之間的配位結構關係,使得在晶格之間產生更多的氧空缺而提升整體觸媒的氧化還原能力。


Cerium oxide exhibits reversible redox with relatively high oxygen storage capacity (OSC). This type of materials contains high concentration of oxygen vacancies, which can make a contribution to catalytic conversion. In this studies, CeO2 nanotubes are synthesized by a hydrothermal method, then impregnated with dopant (In, Zr, or Gd). The H2-TPR results evidenced the improved reducibility compared with CeO2 nanotubes. From TPR-TPO-TPR experiments, all the samples contain irreversible and reversible H2 consumption where reversible H2 consumption occur mainly at above 600℃. Otherwise, the results of BET shows the surface area is the key point that affect the irreversible oxygen vacancy of catalyst. The oxygen stripping reaction of CO2 was tested at 700℃, after catalysts were reduced by hydrogen at high temperature (900℃). The dissociation of CO2 to CO shows an initial steady rate then CO2 conversion decay to zero when the OSC are saturated with increasing pulsing CO2. From the characterization, CeO2 nanotubes with 5% Zr dopant shows the highest OSC. The activity for the oxygen stripping from CO2 has the highest initial CO2 conversion of 100% under the conditions of this study. The implications on the interaction between oxygen vacancies and CO2 are discussed.

摘要 I Abstract II 致謝 III 圖目錄 VI 表目錄 X 第一章、緒論 1 1.1 前言 1 1.2 研究目的與方法 2 第二章、文獻回顧 4 2.1 CeO2材料特性 4 2.2二氧化鈰材料形貌介紹 8 2.3摻雜金屬修飾CeO2材料介紹 14 2.4 CO2催化反應 18 2.5 CO2轉化的熱力學分析 22 2.6 H2O轉換反應 24 第三章、實驗設備與方法 26 3.1 實驗架構 26 3.2 藥品與儀器 27 3.2.1 實驗藥品 27 3.2.2 實驗氣體 27 3.2.3 實驗儀器 27 3.3 觸媒製備 28 3.3.1 管狀CeO2觸媒製備 28 3.3.2 不同金屬前驅物(In、Zr、Gd)修飾管狀CeO2觸媒之製備 29 3.4 材料特性分析原理與方法 30 3.4.1 X光繞射分析儀 (XRD) 30 3.4.2 場發射掃描式電子顯微鏡-能量散射光譜儀 (FESEM-EDX) 31 3.4.3穿透式電子顯微鏡 (TEM) 31 3.4.4 程溫還原反應 (TPR) 32 3.4.5 表面積與孔隙度測定儀 (BET) 32 3.4.6 質譜儀 (Mass Spectrometer) 33 3.5 脫氧反應機制與實驗流程 34 3.5.1實驗系統反應機制 34 3.5.2 CO2脫氧反應測試之實驗流程 35 第四章、結果與討論 37 4.1不同金屬前驅物修飾管狀CeO2材料結構分析 37 4.1.1 SEM特性分析 38 4.1.2 TEM特性分析 44 4.1.3 XRD特性分析 47 4.1.4 H2-TPR特性分析 57 4.1.5 表面積及孔隙特性分析 64 4.2不同金屬前驅物修飾管狀CeO2材料對CO2吸附活性之作用 66 4.3 CO2脫氧反應後之材料結構分析 75 4.3.1 SEM特性分析 75 4.3.2 XRD特性分析 76 4.3.3表面積及孔隙特性分析 80 第五章、結論 84 第六章、參考文獻 86 附錄 97

[1] 朱茲絜, 具氧空缺的氧化鈰觸媒應用於二氧化碳之氧脫除反應, 化學工程系, 國立臺灣科技大學, 台北市, 2016, pp.153.
[2] G.R.R.a.B.G. Mishra, Structural, redox and catalysis chemistry of ceria based materials, Bulletin of the Catalysis Society of India, 2 (2003) 122-134.
[3] R. Qing, W. Sigmund, Redox behavior of ceria nanoparticles, Recent Patents on Materials Science, 7 (2014) 37-49.
[4] S. Deshpande, S. Patil, S.V.N.T. Kuchibhatla, S. Seal, Size dependency variation in lattice parameter and valency states in nanocrystalline cerium oxide, Applied Physics Letters, 87 (2005) 133113.
[5] S.A. Mock, S.E. Sharp, T.R. Stoner, M.J. Radetic, E.T. Zell, R. Wang, CeO2 nanorods-supported transition metal catalysts for CO oxidation, J Colloid Interface Sci, 466 (2016) 261-267.
[6] N. Skorodumova, S. Simak, B.I. Lundqvist, I. Abrikosov, B. Johansson, Quantum origin of the oxygen storage capability of ceria, Physical Review Letters, 89 (2002) 166601.
[7] C.T. Campbell, C.H. Peden, Oxygen vacancies and catalysis on ceria surfaces, Science, 309 (2005) 713-714.
[8] X. Liu, K. Zhou, L. Wang, B. Wang, Y. Li, Oxygen vacancy clusters promoting reducibility and activity of ceria nanorods, Journal of the American Chemical Society, 131 (2009) 3140-3141.
[9] R. Verma, S.K. Samdarshi, S. Bojja, S. Paul, B. Choudhury, A novel thermophotocatalyst of mixed-phase cerium oxide (CeO2/Ce2O3) homocomposite nanostructure: Role of interface and oxygen vacancies, Solar Energy Materials and Solar Cells, 141 (2015) 414-422.
[10] C. Sun, H. Li, L. Chen, Nanostructured ceria-based materials: synthesis, properties, and applications, Energy & Environmental Science, 5 (2012) 8475.
[11] S. Lorentzou, G. Karagiannakis, D. Dimitrakis, C. Pagkoura, A. Zygogianni, A.G. Konstandopoulos, Thermochemical Redox Cycles over Ce-based Oxides, Energy Procedia, 69 (2015) 1800-1809.
[12] J. Campserveux, P. Gerdanian, Etude thermodynamique del'oxyde CeO2−x pour 1.5< OCe< 2, Journal of solid state chemistry, 23 (1978) 73-92.
[13] S. Babu, R. Thanneeru, T. Inerbaev, R. Day, A.E. Masunov, A. Schulte, S. Seal, Dopant-mediated oxygen vacancy tuning in ceria nanoparticles, Nanotechnology, 20 (2009) 085713.
[14] H.-X. Mai, L.-D. Sun, Y.-W. Zhang, R. Si, W. Feng, H.-P. Zhang, H.-C. Liu, C.-H. Yan, Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods, and nanocubes, The Journal of Physical Chemistry B, 109 (2005) 24380-24385.
[15] C. Pan, D. Zhang, L. Shi, CTAB assisted hydrothermal synthesis, controlled conversion and CO oxidation properties of CeO2 nanoplates, nanotubes, and nanorods, Journal of Solid State Chemistry, 181 (2008) 1298-1306.
[16] C.C. Tang, Y. Bando, B.D. Liu, D. Golberg, Cerium Oxide Nanotubes Prepared from Cerium Hydroxide Nanotubes, Advanced Materials, 17 (2005) 3005-3009.
[17] K. Zhou, Z. Yang, S. Yang, Highly reducible CeO2 nanotubes, Chemistry of materials, 19 (2007) 1215-1217.
[18] G. Chen, S. Sun, X. Sun, W. Fan, T. You, Formation of CeO2 nanotubes from Ce(OH)CO3 nanorods through kirkendall diffusion, Inorganic chemistry, 48 (2009) 1334-1338.
[19] G. Chen, C. Xu, X. Song, W. Zhao, Y. Ding, S. Sun, Interface reaction route to two different kinds of CeO2 nanotubes, Inorganic chemistry, 47 (2008) 723-728.
[20] W.-Q. Han, L. Wu, Y. Zhu, Formation and oxidation state of CeO2-x nanotubes, Journal of the American Chemical Society, 127 (2005) 12814-12815.
[21] K.-L. Yu, G.-L. Ruan, Y.-H. Ben, J.-J. Zou, Convenient synthesis of CeO2 nanotubes, Materials Science and Engineering: B, 139 (2007) 197-200.
[22] J.C. Conesa, Computer modeling of surfaces and defects on cerium dioxide, Surface Science, 339 (1995) 337-352.
[23] T. Sayle, S. Parker, C. Catlow, The role of oxygen vacancies on ceria surfaces in the oxidation of carbon monoxide, Surface Science, 316 (1994) 329-336.
[24] X. Wu, S. Kawi, Synthesis, growth mechanism, and properties of open-hexagonal and nanoporous-wall ceria nanotubes fabricated via alkaline hydrothermal route, crystal growth & design, 10 (2010) 1833-1841.
[25] K.S. Lin, S. Chowdhury, Synthesis, characterization, and application of 1-D cerium oxide nanomaterials: a review, Int J Mol Sci, 11 (2010) 3226-3251.
[26] G.B. P. Fornasiero, ∗ R. Di Monte,∗ J. Ka˘spar,∗,1 V. Sergo,† G. Gubitosa,‡ A. Ferrero,‡ and M. Graziani∗, Modification of the Redox Behaviour of CeO2 Induced by Structural Doping with ZrO2, Journal of Catalysis, 164 (1996) 173-183.
[27] J. Kaspar, P. Fornasiero, G. Balducci, R. Di Monte, N. Hickey, V. Sergo, Effect of ZrO2 content on textural and structural properties of CeO2–ZrO2 solid solutions made by citrate complexation route, Inorganica Chimica Acta, 349 (2003) 217-226.
[28] Q. Yuan, H.H. Duan, L.L. Li, L.D. Sun, Y.W. Zhang, C.H. Yan, Controlled synthesis and assembly of ceria-based nanomaterials, J Colloid Interface Sci, 335 (2009) 151-167.
[29] M.J. Rushton, A. Chroneos, Impact of uniaxial strain and doping on oxygen diffusion in CeO2, Sci Rep, 4 (2014) 6068.
[30] D.B. Buchholz, Q. Ma, D. Alducin, A. Ponce, M. Jose-Yacaman, R. Khanal, J.E. Medvedeva, R.P. Chang, The Structure and Properties of Amorphous Indium Oxide, Chem Mater, 26 (2014) 5401-5411.
[31] S.-T. Jean, Y.-C. Her, Growth mechanism and photoluminescence properties of In2O3 nanotowers, Crystal Growth & Design, 10 (2010) 2104-2110.
[32] X. Wu, J. Hong, Z. Han, Y. Tao, Fabrication and photoluminescence characteristics of single crystalline In2O3 nanowires, Chemical physics letters, 373 (2003) 28-32.
[33] b. Wei Wanga, Yao Zhanga,b, Zongyuan Wanga,b, Jin-mao Yana, Qingfeng Gea,c, Chang-jun Liua,b,∗, Reverse water gas shift over In2O3–CeO2 catalysts., Catalysis Today 259 (2016) 402-408.
[34] T.O.M. G. B. González, and J. P. Quintana, O. Warschkow and D. E. Ellis, J.-H. Hwang, J. P. Hodges, J. D. Jorgensen, Defect structure studies of bulk and nano-indium-tin oxide, Journal of applied physics, 96 (2004).
[35] G.R. Rao, J. Kašpar, S. Meriani, R. di Monte, M. Graziani, NO decomposition over partially reduced metallized CeO2-ZrO2 solid solutions, Catalysis letters, 24 (1994) 107-112.
[36] C.D. Sumeya Bedrane∗, Daniel Duprez, Towards the comprehension of oxygen storage processes on model three-way catalysts, Catalysis Today, 73 (2002).
[37] B. Bulfin, F. Call, J. Vieten, M. Roeb, C. Sattler, I.V. Shvets, Oxidation and Reduction Reaction Kinetics of Mixed Cerium Zirconium Oxides, The Journal of Physical Chemistry C, 120 (2016) 2027-2035.
[38] S. Vives, C. Meunier, Defect cluster arrangements and oxygen vacancy migration in Gd doped ceria for different interatomic potentials, Solid State Ionics, 283 (2015) 137-144.
[39] Y. Leng, S. Chan, S. Jiang, K. Khor, Low-temperature SOFC with thin film GDC electrolyte prepared in situ by solid-state reaction, Solid State Ionics, 170 (2004) 9-15.
[40] S. Piñol, M. Morales, F. Espiell, Low temperature anode-supported solid oxide fuel cells based on gadolinium doped ceria electrolytes, Journal of Power Sources, 169 (2007) 2-8.
[41] M.L. Changrong Xia, Low-temperature SOFCs based on Gd0.1Ce0.9O1.95 fabricated by dry pressing, Solid State Ionics, 144 (2001) 249–255.
[42] T.V.a.B.M.R. D NAGA DURGASRI, Facile synthesis of catalytically active CeO2–Gd2O3 solid solutions for soot oxidation, J. Chem. Sci., 123 (2014) 429–435.
[43] K.C. Anjaneya, G.P. Nayaka, J. Manjanna, G. Govindaraj, K.N. Ganesha, Preparation and characterization of Ce1−xGdxO2−δ (x=0.1–0.3) as solid electrolyte for intermediate temperature SOFC, Journal of Alloys and Compounds, 578 (2013) 53-59.
[44] G. Balducci, M.S. Islam, J. Kašpar, P. Fornasiero, M. Graziani, Reduction Process in CeO2−MO and CeO2−M2O3 Mixed Oxides:  A Computer Simulation Study, Chemistry of Materials, 15 (2003) 3781-3785.
[45] S.C. Roy, O.K. Varghese, M. Paulose, C.A. Grimes, Toward solar fuels: photocatalytic conversion of carbon dioxide to hydrocarbons, Acs Nano, 4 (2010) 1259-1278.
[46] C. Song, Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing, Catalysis Today, 115 (2006) 2-32.
[47] X. Guo, D. Mao, G. Lu, S. Wang, G. Wu, The influence of La doping on the catalytic behavior of Cu/ZrO2 for methanol synthesis from CO2 hydrogenation, Journal of Molecular Catalysis A: Chemical, 345 (2011) 60-68.
[48] D.C. M. Sahibzada, I.S. Metcalfe, Hydrogenation of carbon dioxide to methanol over palladium-promoted Cu-ZnO-A12O3 catalysts, catalysis Today, 29 (1996) 367-372.
[49] A. Goguet, F. Meunier, J. Breen, R. Burch, M. Petch, A.F. Ghenciu, Study of the origin of the deactivation of a Pt/CeO2 catalyst during reverse water gas shift (RWGS) reaction, Journal of Catalysis, 226 (2004) 382-392.
[50] G. Valderrama, A. Kiennemann, M.R. Goldwasser, La-Sr-Ni-Co-O based perovskite-type solid solutions as catalyst precursors in the CO2 reforming of methane, Journal of Power Sources, 195 (2010) 1765-1771.
[51] D.W. McKee, Catalytic effects of alkaline earth carbonates in the carbon-carbon dioxide reaction, Fuel, 59 (1980) 308-314.
[52] S. Abanades, A. Le Gal, CO2 splitting by thermo-chemical looping based on ZrxCe1−xO2 oxygen carriers for synthetic fuel generation, Fuel, 102 (2012) 180-186.
[53] B. Zhao, C. Huang, R. Ran, X. Wu, D. Weng, Two-step thermochemical looping using modified ceria-based materials for splitting CO2, Journal of Materials Science, 51 (2015) 2299-2306.
[54] A. Le Gal, S. Abanades, G. Flamant, CO2 and H2O splitting for thermochemical production of solar fuels using nonstoichiometric ceria and ceria/zirconia solid solutions, Energy & Fuels, 25 (2011) 4836-4845.
[55] Q. Jiang, G. Zhou, Z. Jiang, C. Li, Thermochemical CO2 splitting reaction with CexM1−xO2−δ (M= Ti4+, Sn4+, Hf4+, Zr4+, La3+, Y3+ and Sm3+) solid solutions, Solar Energy, 99 (2014) 55-66.
[56] C.F. William C. Chueh, 2 Mandy Abbott,1 Danien Scipio,1 Philipp Furler,2 Sossina M. Haile,1* Aldo Steinfeld2,3, High-Flux Solar-Driven Thermochemical Dissociation of CO2 and H2O Using Nonstoichiometric Ceria, Science, 330 (2010) 1797-1801.
[57] K.B. Yi, C.H. Ko, J.-H. Park, J.-N. Kim, Improvement of the cyclic stability of high temperature CO2 absorbent by the addition of oxygen vacancy possessing material, Catalysis Today, 146 (2009) 241-247.
[58] G.A. Olah, G.S. Prakash, A. Goeppert, Anthropogenic chemical carbon cycle for a sustainable future, Journal of the American Chemical Society, 133 (2011) 12881-12898.
[59] G.A. Olah, A. Goeppert, G.S. Prakash, Chemical recycling of carbon dioxide to methanol and dimethyl ether: from greenhouse gas to renewable, environmentally carbon neutral fuels and synthetic hydrocarbons, The Journal of organic chemistry, 74 (2008) 487-498.
[60] T. Nakamura, Hydrogen production from water utilizing solar heat at high temperatures, Solar energy, 19 (1977) 467-475.
[61] S. Ihara, On the study of hydrogen production from water using solar thermal energy, International Journal of Hydrogen Energy, 5 (1980) 527-534.
[62] H. Kaneko, Y. Tamaura, Reactivity and XAFS study on (1− x) CeO 2–xNiO (x= 0.025–0.3) system in the two-step water-splitting reaction for solar H2 production, Journal of Physics and Chemistry of Solids, 70 (2009) 1008-1014.
[63] H. Kaneko, H. Ishihara, S. Taku, Y. Naganuma, N. Hasegawa, Y. Tamaura, Cerium ion redox system in CeO2–xFe2O3 solid solution at high temperatures (1,273–1,673 K) in the two-step water-splitting reaction for solar H2 generation, Journal of Materials Science, 43 (2008) 3153-3161.
[64] A. Le Gal, S. Abanades, Catalytic investigation of ceria-zirconia solid solutions for solar hydrogen production, International Journal of Hydrogen Energy, 36 (2011) 4739-4748.
[65] A. Le Gal, S.p. Abanades, Dopant incorporation in ceria for enhanced water-splitting activity during solar thermochemical hydrogen generation, The Journal of Physical Chemistry C, 116 (2012) 13516-13523.
[66] M. Roeb, M. Neises, N. Monnerie, F. Call, H. Simon, C. Sattler, M. Schmücker, R. Pitz-Paal, Materials-Related Aspects of Thermochemical Water and Carbon Dioxide Splitting: A Review, Materials, 5 (2012) 2015-2054.
[67] K. Otsuka, M. Hatano, A. Morikawa, Decomposition of water by cerium oxide of δ-phase, Inorganica chimica acta, 109 (1985) 193-197.
[68] F. Zhang, Q. Jin, S.-W. Chan, Ceria nanoparticles: Size, size distribution, and shape, Journal of Applied Physics, 95 (2004) 4319-4326.
[69] S. Nousir, R. Maache, S. Azalim, M. Agnaou, R. Brahmi, M. Bensitel, Synthesis and investigation of the physico-chemical properties of catalysts based on mixed oxides CexZr1−xO2, Arabian Journal of Chemistry, 8 (2015) 222-227.
[70] P. Kumar, P. With, V.C. Srivastava, R. Gläser, I.M. Mishra, Efficient ceria-zirconium oxide catalyst for carbon dioxide conversions: Characterization, catalytic activity and thermodynamic study, Journal of Alloys and Compounds, 696 (2017) 718-726.
[71] D. He, H. Hao, D. Chen, J. Liu, J. Yu, J. Lu, F. Liu, G. Wan, S. He, Y. Luo, Synthesis and application of rare-earth elements (Gd, Sm, and Nd) doped ceria-based solid solutions for methyl mercaptan catalytic decomposition, Catalysis Today, 281 (2017) 559-565.
[72] U. Hennings, R. Reimert, Investigation of the structure and the redox behavior of gadolinium doped ceria to select a suitable composition for use as catalyst support in the steam reforming of natural gas, Applied Catalysis A: General, 325 (2007) 41-49.
[73] G.R. RAO, Influence of metal particles on the reduction properties of ceria-based materials studies by TPR, Indian Academy of Sciences, 22 (1999).
[74] J.K. Paolo Fornasiero, Mauro Graziani, On the rate determining step in the reduction of CeO2–ZrO2, Applied Catalysis B: Environmental, 22 (1999).
[75] C. Binet, A. Badri, J.-C. Lavalley, A spectroscopic characterization of the reduction of ceria from electronic transitions of intrinsic point defects, The Journal of Physical Chemistry, 98 (1994) 6392-6398.
[76] D.N. Durgasri, T. Vinodkumar, P. Sudarsanam, B.M. Reddy, Nanosized CeO2–Gd2O3 Mixed Oxides: Study of Structural Characterization and Catalytic CO Oxidation Activity, Catalysis Letters, 144 (2014) 971-979.
[77] T. Bielz, H. Lorenz, W. Jochum, R. Kaindl, F. Klauser, B. Klötzer, S. Penner, Hydrogen on In2O3: Reducibility, Bonding, Defect Formation, and Reactivity, The Journal of Physical Chemistry C, 114 (2010) 9022-9029.
[78] G. Lafaye, J. Barbier, D. Duprez, Impact of cerium-based support oxides in catalytic wet air oxidation: Conflicting role of redox and acid–base properties, Catalysis Today, 253 (2015) 89-98.
[79] J. Jin, C. Li, C.-W. Tsang, B. Xu, C. Liang, Catalytic combustion of methane over Pd/Ce–Zr oxides washcoated monolithic catalysts under oxygen lean conditions, RSC Adv., 5 (2015) 102147-102156.
[80] J.-G. Kang, B.-K. Min, Y. Sohn, Synthesis and characterization of Gd(OH)3 and Gd2O3 nanorods, Ceramics International, 41 (2015) 1243-1248.
[81] P. Fornasiero, R. Dimonte, G.R. Rao, J. Kaspar, S. Meriani, A.-. Trovarelli, M. Graziani, Rh-loaded CeO2-ZrO2 solid-solutions as highly efficient oxygen exchangers: dependence of the reduction behavior and the oxygen storage capacity on the structural-properties, Journal of Catalysis, 151 (1995) 168-177.
[82] S. Damyanova, B. Pawelec, K. Arishtirova, M.V.M. Huerta, J.L.G. Fierro, Study of the surface and redox properties of ceria–zirconia oxides, Applied Catalysis A: General, 337 (2008) 86-96.
[83] J. Wang, L. Chen, L. Noreña, J. Navarrete, Spectroscopic study and catalytic evaluation of mesostructured Al-MCM-41 and Pt/H 3 PW 12 O 40/Al-MCM-41 catalysts, Applied Catalysis A: General, 357 (2009) 223-235.
[84] S.C. Yang, W.N. Su, J. Rick, S.D. Lin, J.Y. Liu, C.J. Pan, J.F. Lee, B.J. Hwang, Oxygen vacancy engineering of cerium oxides for carbon dioxide capture and reduction, ChemSusChem, 6 (2013) 1326-1329.
[85] C. Li, X. Liu, G. Lu, Y. Wang, Redox properties and CO2 capture ability of CeO2 prepared by a glycol solvothermal method, Chinese Journal of Catalysis, 35 (2014) 1364-1375.
[86] C. Oliva, G. Termignone, F. Vatti, L. Forni, A. Vishniakov, Electron paramagnetic resonance spectra of CeO2 catalyst for CO oxidation, Journal of materials science, 31 (1996) 6333-6338.
[87] T. Staudt, Y. Lykhach, N. Tsud, T. Skála, K. Prince, V. Matolín, J. Libuda, Ceria reoxidation by CO2: a model study, Journal of Catalysis, 275 (2010) 181-185. 

QR CODE