簡易檢索 / 詳目顯示

研究生: 王暐綸
Wei-lun Wang
論文名稱: 以真空蒸鍍即時量測法探討有機薄膜電晶體之遲滯現象
In-Situ Real Time Probing Hysteresis Phenomena of the Organic Thin-Film Transistors
指導教授: 李志堅
Chih-Chien Lee 
口試委員: 劉舜維
Shun-Wei Liu
徐世祥
Shih-Hsiang Hsu
范慶麟
Ching-Lin Fan
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 84
中文關鍵詞: 即時量測法五環素銅酞菁有機薄膜電晶體遲滯現象
外文關鍵詞: In-situ, pentacene, CuPc, OTFTs, hysteresis phenomena
相關次數: 點閱:210下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用正型(P-type)非極性材料五環素(Pentacene)以及正型極性材料銅酞菁(Cooper Phthalocyanine, CuPc)作為有機薄膜電晶體(Organic Thin-Film Transistor)元件的半導體主動層,再以真空蒸鍍即時量測系統(In-situ real time measurement system),分別以三個不同蒸鍍速率(0.01 nm/s, 0.03 nm/s, 0.1nm/s)蒸鍍五環素薄膜電晶體,另外以不同外加電場(0V, 4V, 8V) 蒸鍍銅酞菁薄膜電晶體,觀察不同蒸鍍條件對有機膜層所造成的影響,並進一步探討五環素元件在不同的氣體環境(Vacuum, N2, Air)下所產生的遲滯現象。
      在五環素的部分,我們發現以鍍率0.03 nm/s蒸鍍五環素元件,相較於其他鍍率,在三種氣體環境下所產生的遲滯現象皆最不顯著,並利用原子力顯微鏡觀察到以鍍率0.03 nm/s蒸鍍的五環素有機膜層,成膜性較佳且膜層缺陷較少,如此一來,載子捕捉(Carrier trapping)的情況較少,進而造成遲滯現象的縮減。
    在銅酞菁的部分,由於銅酞菁為極性材料,故我們變化電場以期改變有機膜層覆蓋程度,我們發現外加電場對於有機膜層的覆蓋率有影響,當外加4V電壓時遲滯現象有顯著縮減,推測是電場可以令材料的排列更加一致。
    另外,觀察三種氣體環境下五環素元件遲滯現象的變化,可以確定此一遲滯現象並非元件本身的特性,然而,此現象為一可逆的現象,當重新到達高真空度時,元件特性亦重新恢復。
    總結以上實驗,我們可以知道無論是極性材料或非極性材料,我們都可以藉由改變蒸鍍速率或者變化外加電場來改變有機膜層的排列,並且最佳化蒸鍍條件。另一方面,將五環素元件暴露於不同的氣體環境之下,所產生不同程度的遲滯現象,讓我們可藉由薄膜電晶體蒸鍍不同的有機膜層,作為可重複利用的氣體感測器(Gas sensors)。


    In this thesis, we report an in situ and real-time measurement method for the electrical characteristic evolution of p-type (Cooper Phthalocyanine, CuPc) and p-type (Pentacene) organic thin film transistors (OTFTs) during the deposition of organic thin film.
    In the first part, We analyzed the thickness dependence of OTFTs where the different deposition rate (0.01, 0.03 and 0.1 nm/s) to grow the pentacene thin film on the bottom contact substrate at room temperature. We demonstrate that the carrier transport in pentacene TFTs is strongly affected by the quality of surface coverage in the first few monolayers. In addition, at our optimum deposition rate of 0.03 nm/s, we obtained a hole mobility of 0.27 cm2/Vs which is better than the slower (0.01 nm/s) and faster (0.1 nm/s) deposition rates. We speculate that this improvement of hole mobility is due to the increased surface coverage on the insulator, resulting in improved probability of charge percolation in the channel.
    In the second part, We observed the growth of the CuPc TFTs with the different extra electric field (0V, 4V and 8V), and the substrate at 120℃. We found that the surface coverage of the CuPc thin film with 4V extra voltage is much better other extra electric field(0V and 8V), and hysteresis phenomena is unapparent.
    In the last part, we measured the pentacene TFTs in different conditions and calculated the area density of the trapped electrons, found obvious hysteresis phenomena of pentacene TFTs in ambient air. Furthermore, the hysteresis phenomena were reversible in this studies, it would be an important factor to OTFTs as sensor.

    誌謝 i 摘要 ii Abstract iv 總目錄 vi 圖目錄 x 表目錄 xiv Chapter 1緒論 1 1-1前言 1 1-2有機半導體材料 3 1-2-1傳輸 4 1-2-2能階 4 1-2-3正型(P-type)材料 5 1-2-3負型(N-type)材料 6 1-3有機薄膜電晶體 7 1-3-1金氧半場效電晶體(MOSFETs) 7 1-3-2薄膜電晶體(TFTs) 9 1-3-3有機薄膜電晶體(OTFTs) 10 1-4研究動機與方法 12 1-4-1五環素(Pentacene) 12 1-4-2銅酞菁(Cooper Phthalocyanine, CuPc) 13 1-4-3遲滯現象(Hysteresis phenomena) 14 Chapter 2理論基礎 15 2-1 傳輸機制 15 2-1-1無機半導體 15 2-1-2有機半導體 16 2-2理論模型 18 2-2-1輸出特性(Output Characteristic)分析 18 2-2-2轉移特性(Transfer characteristic)分析 21 2-3接觸電阻(Contact Resistance) 22 2-3-1表面形貌(Morphology) 22 2-3-2量測法 23 2-4遲滯現象(Hysteresis phenomena) 25 Chapter 3實驗方法與步驟 29 3-1實驗材料 29 3-1-1基板 29 3-1-2光阻(Photoresist)與顯影液(Developer) 29 3-1-3五環素(Pentacene) 29 3-1-4銅酞菁(Cooper Phthalocyanine, CuPc) 29 3-2製程設備 30 3-2-1超音波震盪機(Ultrasonic cleaner) 30 3-2-2氧電漿清潔機(O2 plasma cleaner) 30 3-2-3旋轉塗佈機(Spin coater) 31 3-2-4曝光機(Aligner) 32 3-2-5熱蒸鍍機(Thermal evaporation) 32 3-3量測儀器 34 3-3-1表面輪廓儀(α-step) 34 3-3-2原子力顯微鏡(Atomic force microscope, AFM) 34 3-3-3光電子光譜儀(AC2) 36 3-3-4 X光繞射儀(X-ray diffraction, XRD) 37 3-3-5真空蒸鍍即時量測系統(In- situ real time measurement) 37 3-4元件製作 39 3-4-1基板製作流程 39 3-4-2漏電流量測 41 3-4-3電極處理 42 3-4-4蒸鍍半導體主動層 43 3-4-5真空量測 43 Chapter4 結果與討論 44 4-1變鍍率探討五環素薄膜電晶體之遲滯現象 44 4-1-1真空蒸鍍量測蒸鍍速率與遲滯現象關聯性 45 4-1-2元件電性表現 47 4-1-3分子結晶性及堆疊程度分析 49 4-1-4薄膜表面形貌分析 50 4-2變電場探討銅酞菁薄膜電晶體之遲滯現象 52 4-2-1真空蒸鍍量測外加電場與遲滯現象關聯性 52 4-2-2元件電性表現 54 4-2-3薄膜表面形貌分析 55 4-3變環境探討五環素薄膜電晶體之遲滯現象 56 4-3-1改變氣體環境與遲滯現象關聯性 56 4-3-2元件電性表現 58 4-3-3載子捕捉(Carrier trapping) 59 Chapter5 結論與未來展望 61 5-1 結論 61 5-2 未來展望 62 參考文獻 63

    [1] M. Pope and C. E. Sweberg, "Electronic Process in Organic Crystals," Clarendon, New York, (1982).
    [2] D. A. Neamen, "Semiconductor Physics and Devices, 3rd Edition," McGraw Hill (2003)
    [3] R. B. Campbell, J. M. Robertson and J. Trotter, "The crystal structure of hexacene, and a revision of the crystallographic data for tetracene," Acta Cryst. 15, 289 (1962).
    [4] N. F. Matt and R. W. Gurney, "Electronic Process in Ionic Crystals," Clarendon Press, Oxford, U. K. (1940).
    [5] H. Koezuka, A. Tsumura and T. Ando, "Field-effect transistor with polythiophene thin film," Synth. Metals 18, 699 (1987).
    [6] A. Tsumura, H. Koezuka and T. Ando, "Polythiophene field-effect transistor: Its characteristics and operation mechanism," Synth. Metals 25, 11 (1988).
    [7] C. W. Tang and S. A. VanSlyke, "Organic electroluminescent diodes," Appl. Phys. Lett. 51, 913 (1987).
    [8] C. W. Tang, "Two-layer organic photovoltaic cell," Appl. Phys. Lett. 48, 183 (1986).
    [9] A. Tsumura, H. Koezuka and T. Ando, "Macromolecular electronic device: Field-effect transistor with a polythiophene thin film," Appl. Phys. Lett. 49, 1210 (1986).
    [10] P. Lin and F. Yan, "Organic thin-film transistors for chemical and biological sensing," Adv. Mater. 24, 34 (2012).
    [11] H. U. Khan, J. Jang, J.-J. Kim, and W. Knoll, "Effect of passivation on the sensitivity and stability of pentacene transistor sensors in aqueous media," Biosens. Bioelectron. 26, 4217 (2011).
    [12] L. Jagannathan and V. Subramanian, "DNA detection using organic thin film transistors: Optimization of DNA immobilization and sensor sensitivity," Biosens. Bioelectron. 25, 288 (2009)..
    [13] C. D. Dimitrakopoulos and P. R. L. Malenfant, "Organic thin film transistors for large area electronics," Adv. Mater. 14, 99 (2002).
    [14] G. Horowitz, "Organic field-effect transistors," Adv. Mater. 10, 365 (1998).
    [15] Z. Bao and J. Locklin, "Organic Filed Effect Transistors," CRC Press, New York (2007).
    [16] B. Crone, A. Dodabalapur, J. Rogers, S. Martin, R. Filas, L. Yen-Yi, Z. Bao, R. Sarpeshkar, L. Wenjie and H. Katz, "Novel fabrication methods and characteristics of organic complementary circuits" IEDM Technical Digest. International, 115 (1999).
    [17] S. Steudel, S. De Vusser, K. Myny, M. Lenes, J. Genoe and P. Heremans, "Comparison of organic diode structures regarding high-frequency rectification behavior in radio-frequency identification tags," J. Appl. Phys. 99, 114519 (2006).
    [18] L. Zhou, A. Wanga, S.-C. Wu, J. Sun, S. Park and T. N. Jackson, "All-organic active matrix flexible display," Appl. Phys. Lett. 88, 083502 (2006).
    [19] J. J. Miasik , A. Hooper, and B. C. Tofield, "Conducting polymer gas sensors, " J. Chem. Soc. 82, 1117 (1986).
    [20]Y. Shirota and H. Kageyama, "Charge carrier transporting molecular materials and their applications in devices," Chem. Rev. 107, 953 (2007).
    [21] C. Melzer and H. Seggern, "Organic field-effect transistors for CMOS devices," Org. Electron. 223, 189 (2010).
    [22] Simon M. Sze and Kwok K. Ng, "Physics of Semiconductor Devices, 3rd Edition," Wiley (2006).
    [23] T. Mori, "Molecular materials for organic field-effect transistors," J. Phys-Condens. Mat. 20, 184010 (2008).
    [24] Y. Y. Lin, D. J. Gundlach, S. F. Nelson and T. N. Jackson, "Stacked pentacene layer organic thin-film transistors with improved characteristics," IEEE Electron Dev. Lett. 18, 606 (1997).
    [25] O. D. Jurchescu, J. Baas and T. T. M. Palstra, "Effect of impurities on the mobility of single crystal pentacene," Appl. Phys. Lett. 84, 3061 (2004).
    [26] A. Dodabalapur, "Semiconductor technology:Negatively successful," Nature 434, 151 (2005).
    [27] B. A. Jones, A. Facchetti, M. R. Wasielewski and T. J. Marks, "Tuning orbital energetics in arylene diimide semiconductors. materials design for ambient stability of n-type charge transport," J. Am. Chem. Soc. 129, 15259 (2007).
    [28] G. Gelinck, P. Heremans, K. Nomoto and T. D. Anthopoulos, "Organic transistors in optical displays and microelectronic applications," Adv. Mater. 22, 3778 (2010).
    [29] H. Klauk, M. Halik, U. Zschieschang, G. n. Schmid, W. Radlik and W. Weber, "High-mobility polymer gate dielectric pentacene thin film transistors," J. Appl. Phys. 92, 5259 (2002).
    [30] D. A. Neamen, "Microelectronics: Circuit Analysis and Design, 4th Edition," McGraw Hill (2009)
    [31] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano and H. Hosono, "Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors," Nature 432, 488 (2004).
    [32] M. L. Chabinyc and A. Salleo, "Materials requirements and fabrication of active matrix arrays of organic thin-film transistors for displays," Chem. Mater. 16, 4509 (2004).
    [33] S. E. Fritz, S. M. Martin, C. D. Frisbie, M. D. Ward and M. F. Toney, "Structural characterization of a pentacene monolayer on an amorphous sio2 substrate with grazing incidence x-ray diffraction," J. Am. Chem. Soc. 126, 4084 (2004).
    [34] A. R. Brown, A. Pomp, C. M. Hart and D. M. de Leeuw, "Logic gates made from polymer transistors and their use in ring oscillators," Science 270, 972 (1995).
    [35] J. G. Laquindanum, H. E. Katz, A. J. Lovinger and A. Dodabalapur, "Morphological origin of high mobility in pentacene thin-film transistors," Chem. Mater. 8, 2542 (1996).
    [36] Z. Bao, A. J. Lovinger, and A. Dodabalapur, "Organic field‐effect transistors with high mobility based on copper phthalocyanine," Appl. Phys. Lett. 69, 3066 (1996).
    [37] J. Gao, J. B. Xu, M. Zhu, N. Ke, and D. Ma, "Thickness dependence of mobility in CuPc thin film on amorphous SiO2 substrate," J. Phys. D: Appl. Phys. 40, 5666 (2007).
    [38] L. Zhen, L. Shang, M. Liua, D. Tu, Z. Ji, X. Liu, G. Liu, J. Liu, and H. Wang, "Light-induced hysteresis characteristics of copper phthalocyanine organic thin-film transistors," Appl. Phys. Lett. 93, 203302 (2008).
    [39] R. A. Street, D. Knipp, and A. R. Volkel, "Hole transport in polycrystalline pentacene transistors," Appl. Phys. Lett. 80, 1658 ( 2002).
    [40] C. Goldmann, D. J. Gundlach, and B. Batlogg, "Evidence of water-related discrete trap state formation in pentacene singlecrystal field-effect transistors," Appl. Phys. Lett. 88, 063501 (2006).
    [41] W. D. Gill, "Drift mobilities in amorphous charg‐transfer complexes of trinitrofluorenone and poly‐n‐vinylcarbazole," J. Appl. Phys. 43, 5033 (1972).
    [42] R. M. Glaeser and R. S. Berry, " Mobilities of electrons and holes in organic molecular solids. comparison of band and hopping models,"J. Chem. Phys. 44, 3797 (1966).
    [43] E. Pinotti, A. Sassella, A. Borghesi, and R. Tubino, " Electrical Characterization of Organic Semiconductors by Transient Current Methods," Synth. Met. 122, 169 (2001).
    [44] D. Knipp, R. A. Street, A. Volkel and J. Ho, "Pentacene thin film transistors on inorganic dielectrics: Morphology, structural properties, and electronic transport," J. Appl. Phys. 93, 347 (2003)
    [45] S. D. Wang, T. Minari, T. Miyadera, K. Tsukagoshi and Y. Aoyagi, "Contact-metal dependent current injection in pentacene thin-film transistors," Appl. Phys. Lett. 91, 203508 (2007).
    [46] P. V. Pesavento, R. J. Chesterfield, C. R. Newman and C. D. Frisbie, "Gated four-probe measurements on pentacene thin-film transistors: Contact resistance as a function of gate voltage and temperature," J. Appl. Phys. 96, 7312 (2004).
    [47] K. P. Puntambekar, P. V. Pesavento and C. D. Frisbie, "Surface potential profiling and contact resistance measurements on operating pentacene thin-film transistors by Kelvin probe force microscopy," Appl. Phys. Lett. 83, 5539 (2003).
    [48] M. F. Mabrook, Y. Yun, C. Pearson, D. A. Zeze, and M. C. Petty, "A pentacene-based organic thin film memory transistor," Appl. Phys. Lett. 94, 173302 (2009).
    [49] M. F. Chang, P. T. Lee, S. P. McAlister, and A. Chin, "A flexible organic pentacene nonvolatile memory based on high-κ dielectric layers," Appl. Phys. Lett. 93, 233302 (2008).
    [50] D. K. Hwang, M. S. Oh, J. M. Hwang, J. H. Kim, S. Im, "Hysteresis mechanisms of pentacene thin-film transistors with polymer/oxide bilayer gate dielectrics," Appl. Phys. Lett. 92, 013304 (2008).
    [51] S. H. Kim, H. Yang, S. Y. Yang, K. Hong, D. Choi, C. Yang, D. S. Chung, and C. E. Park, "Effect of water in ambient air on hysteresis in pentacene field-effect transistors containing gate dielectrics coated with polymers with different functional groups," Org. Electron. 9, 673 (2008).
    [52] C. Ucurum, H. Goebel, F. A. Yildirim, W. Bauhofer, and W. Krautschneider, "Hole trap related hysteresis in pentacene field-effect transistors," J. Appl. Phys. 104, 084501 (2008).
    [53] J. Veres, S. D. Ogier, S. W. Leeming, D. C. Cupertino and S. Mohialdin Khaffaf, "Low-k Insulators as the Choice of Dielectrics in Organic Field-Effect Transistors," Adv. Funct. Mater. 13, 199 (2003).
    [54] D. Knipp, R. A. Street, A. Volkel and J. Ho, "Pentacene thin film transistors on inorganic dielectrics: Morphology, structural properties, and electronic transport," J. Appl. Phys. 93, 347 (2003).
    [55] T. Itoh and N. Yamauchi, "Surface morphology characterization of pentacene thin film and its substrate with under-layers by power spectral density using fast Fourier transform algorithms," Appl. Surf. Sci. 253, 6196 (2007).
    [56] S. Pratontep, M. Brinkmann, F. Nuesch and L. Zuppiroli, "Correlated growth in ultrathin pentacene films on silicon oxide: Effect of deposition rate," Phys. Rev. B 69, 165201 (2004).
    [57] S. Pratontep, M. Brinkmann, F. Nuesch and L. Zuppiroli, "Nucleation and growth of ultrathin pentacene films on silicon dioxide: effect of deposition rate and substrate temperature," Synth. Metals 146, 387 (2004).
    [58] R. Ruiz, D. Choudhary, B. Nickel, T. Toccoli, K.-C. Chang, A. C. Mayer, P. Clancy, J. M. Blakely, R. L. Headrick, S. Iannotta and G. G. Malliaras, "Pentacene thin film growth," Chem. Mater. 16, 4497 (2004).
    [59] P. Parisse, M. Passacantando, S. Picozzi and L. Ottaviano, "Conductivity of the thin film phase of pentacene," Org. Electron. 7, 403 (2006).
    [60] Z. T. Zhu, J. T. Mason, R. Dieckmann, and G. G. Malliaras, "Humidity sensors based on pentacene thin-film transistors," Appl. Phys. Lett. 81, 4643 (2002).
    [61] D. Li, E. Borkent, R. Nortrup, H. Moon, H. Katz, and Z. Baoa, "Humidity effect on electrical performance of organic thin-film transistors," Appl. Phys. Lett. 86, 042105 (2005).
    [62] G. Gu, M. G. Kane, J. E. Doty, and A. H. Firester, "Electron traps and hysteresis in pentacene-based organic thin-film transistors," Appl. Phys. Lett. 87, 243512 (2005).
    [63]S. Imaia, H. Yanagia, and S. Hottab, "Ambipolar field-effect transistors with bilayered thiophene/phenylene co-oligomers," Org. Electron. 14, 80 (2013).

    QR CODE