簡易檢索 / 詳目顯示

研究生: 陳丁誌
Ding-jhih Chen
論文名稱: 鉻鉬鋼於空氣/氮氣氣氛下之LiNO3-NaNO3-KNO3共晶融鹽的高溫腐蝕
High-temperature corrosion of Cr-Mo steels in molten LiNO3-NaNO3-KNO3 eutectic salt under air/nitrogen atmosphere
指導教授: 王朝正
Chaur-jeng Wang
口試委員: 雷添壽
Tien-shou Lei
劉宏義
Horng-yih Liou
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 102
中文關鍵詞: 鉻鉬鋼鉻含量鋰-鈉-鉀共晶硝酸融鹽高溫腐蝕
外文關鍵詞: Cr-Mo steel, Chromium content, Molten LiNO3-NaNO3-KNO3 eutectic salt, High-temperature corrosion
相關次數: 點閱:176下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究採用不同鉻含量之鉻鉬鋼(0、2.25、5、9、12 wt.% Cr),於550 °C空氣/氮氣氣氛下之LiNO3-NaNO3-KNO3共晶融鹽進行250、500與1000小時之浸滯腐蝕實驗。目的為探討不同氣氛下,鉻鉬鋼在融鹽中之腐蝕是否會產生差異,及鋼料鉻含量對其於融鹽中的高溫腐蝕行為影響。研究結果顯示,各鋼料的重量增重皆與腐蝕時間成正比,在空氣氣氛下之重量增重大於氮氣氣氛;並且隨著鋼料鉻含量的增加,其重量增重逐步降低,鉻含量達到9 wt.%時,重量增重會大幅降低。鋼料腐蝕後的顯微結構分析顯示,不同氣氛下,鋼料會生成不同的腐蝕產物。在空氣下,各鋼料的腐蝕皮膜是由外側LiFe5O8與內側(Fe,Cr)3O4組成;氮氣氣氛下,則是由外側LiFeO2與內側(Fe,Cr)3O4組成,且鋼料在氮氣氣氛下被融鹽腐蝕的程度較輕微。而腐蝕後之皮膜厚度隨鋼料的鉻含量增加而減薄,並且在鉻含量達到9 wt.%時,抵抗融鹽腐蝕的能力可以得到大幅改善。


This study investigated the effect of the chromium on the high-temperature corrosion behavior of Cr-Mo steel in molten salt under air/nitrogen atmosphere. The corrosion test was performed by immersing Cr-Mo steels with different chromium content (0, 2.25, 5, 9, 12 wt.% Cr) in static molten LiNO3-NaNO3-KNO3 eutectic salt at 550 °C for 250, 500 and 1000 hours with air and nitrogen cover gas. The result shows the weight gains of the steels are directly proportional to the corrosion time but are inversely proportional to the chromium content. And the weight gains under air atmosphere is greater than under nitrogen atmosphere. The microstructure analysis of the corroded steels shows the corrosion scales on the steels are composed of an outer LiFe5O8、LiFeO2 and an inner (Fe,Cr)3O4 layers under air atmosphere ; an outer LiFeO2 and an inner (Fe,Cr)3O4 layers when the molten salt cover with nitrogen gas. Also, the thickness of the corrosion scales decreased with the chromium content increased. According to the result of this study, it has been confirmed that the corrosion resistance of steel in the molten slat can be dramatically improved when the chromium content reached 9 wt.%.

第一章 前言 1 第二章 文獻回顧 3 2.1 聚光型太陽能(Concentrated Solar Power,CSP) 3 2.1.1 操作原理 3 2.1.2 融鹽的選擇 8 2.2 LiNO3-NaNO3-KNO3共晶融鹽之熱化學性質 11 2.3 鐵鉻合金於550℃下的高溫氧化 13 2.4 鐵鉻合金於共晶融鹽中之腐蝕 17 2.4.1 NaNO3-KNO3共晶融鹽之腐蝕 17 2.4.2 Li2CO3-K2CO3共晶融鹽之腐蝕 19 2.5 不同氣氛對共晶融鹽之熱化學影響 22 第三章 實驗方法 23 3.1 融鹽腐蝕試驗 24 3.1.1 試片製備 24 3.1.2 融鹽腐蝕試驗製程 25 3.2 分析設備與方法 29 3.2.1 分析設備 29 3.2.1 分析方法 30 第四章 實驗結果 33 4.1 氮氣氣氛保護下密閉環境的融鹽腐蝕 33 4.1.1 腐蝕形態外觀 33 4.1.2 鋼料腐蝕後之重量增重 35 4.1.3 腐蝕型態與腐蝕產物分析 37 4.2 開放環境空氣氣氛下的融鹽腐蝕 49 4.2.1 腐蝕形態外觀 49 4.2.2 鋼料腐蝕後之重量增重 51 4.2.3 腐蝕形態與腐蝕產物分析 53 4.3 共晶融鹽之熱穩定性 64 第五章 討論 67 5.1 鋼料在共晶融鹽中的腐蝕機制 67 5.1.1 氮氣氣氛下之LiNO3-NaNO3-KNO3共晶融鹽腐蝕 68 5.1.2 空氣氣氛下之LiNO3-NaNO3-KNO3共晶融鹽腐蝕 72 5.2 氣氛之作用 74 5.3 鉻元素在合金中的作用 75 第六章 結論 77 參考文獻 79 附錄1 熱力學計算過程 83

[1]S. M. Davison and A. C. Sun,"Thermodynamic Analysis of Solid–Liquid Phase Equilibria of Nitrate Salts", Industrial & Engineering Chemistry Research, vol. 50, pp. 12617-12625, 2011.
[2]T. Bauera, D. Lainga, and R. Tammea,"Recent Progress in Alkali Nitrate/Nitrite Developments for Solar Thermal Power Applications", Molten Salts Chemistry and Technology , MS9, Trondheim, Norway 5 - 9 June 2011.
[3]T. Wang, D. Mantha, and R. G. Reddy,"Thermal stability of the eutectic composition in LiNO3–NaNO3–KNO3 ternary system used for thermal energy storage", Solar Energy Materials and Solar Cells, vol. 100, pp. 162-168, 2012.
[4]D. Mantha, T. Wang, and R. G. Reddy,"Thermodynamic Modeling of Eutectic Point in the LiNO3-NaNO3-KNO3 Ternary System", Journal of Phase Equilibria and Diffusion, vol. 33, pp. 110-114, 2012.
[5]R. W. Bradshaw and N. P. Siegel,"Molten Nitrate Salt Development For Thermal Energy Storage In Parabolic Trough Solar Power Systems", vol. Proceedings of Energy Sustainability 2008, August 10-14, 2008, Jacksonville, Florida USA,ES2008-54174.
[6]S. H. Goods, R. W. Bradshaw, M. R. Prairie, and J. M. Chavez,"Corrosion of Stainless and Carbon Steels in Molten Mixtures of Industrial Nitrates", Sandia National Laboratories, SAND94-8211 UC-234, Unlimited Release, Printed March 1994.
[7]S. H. Goods and R. W. Bradshaw,"Corrosion of stainless steels and carbon steel by molten mixtures of commercial nitrate salts", Journal of Materials Engineering and Performance, vol. 13, pp. 78-87, Feb 2004.
[8]R. I. Dunn, P. J. Hearps, and M. N. Wright,"Molten-Salt Power Towers: Newly Commercial Concentrating Solar Storage", Proceedings of the Ieee, vol. 100, pp. 504-515, Feb 2012.
[9]X. J. Zhang, J. Tian, K. C. Xu, and Y. C. Gao,"Thermodynamic evaluation of phase equilibria in NaNO3-KNO3 system", Journal of Phase Equilibria, vol. 24, pp. 441-446, Oct 2003.
[10]R. G. Reddy,"Novel Molten Salts Thermal Energy Storage for Concentrating Solar Power Generation", DOE-Solar Energy Technologies Program,The University of Alabama (UA), DE-FG36-08GO18153,2012.
[11]J. Metsajoki, E. Huttunen-Saarivirta, and T. Lepisto,"Oxidation of Uncoated and Aluminized 9-12% Cr Boiler Steels at 550-650°C", Journal of Materials Engineering and Performance, vol. 20, pp. 298-305, 2010.
[12]P. Biedenkopf, M. Spiegel, and H. J. Grabke,"The corrosion behavior of Fe-Cr alloys containing Co, Mn, and/or Ni and of a Co-base alloy in the presence of molten (Li,K)-carbonate", Materials and Corrosion-Werkstoffe Und Korrosion, vol. 48, pp. 731-743, Nov 1997.
[13]P. Biedenkopf, M. Spiegel, and H. J. Grabke,"High temperature corrosion of low and high alloy steels under molten carbonate fuel cell conditions", Materials and Corrosion-Werkstoffe Und Korrosion, vol. 48, pp. 477-488, Aug 1997.
[14]M. Spiegel, P. Biedenkopf, and H. J. Grabke,"Corrosion of iron base alloys and high alloy steels in the Li2CO3-K2CO3 eutectic mixture", Corrosion Science, vol. 39, pp. 1193-1210, Jul 1997.
[15]P. Biedenkopf, M. Spiegel, and H. J. Grabke,"The corrosion behaviour of iron and chromium in molten (Li0.62K0.38)2CO3", Electrochimica Acta, vol. 44, pp. 683-692, 1998.
[16]R. I. Olivares,"The thermal stability of molten nitrite/nitrates salt for solar thermal energy storage in different atmospheres", Solar Energy, vol. 86, pp. 2576-2583, 2012.
[17]J. Li, J. Li, J. Luo, L. Wang, and X. He,"Recent Advances in the LiFeO2-based Materials for Li-ion Batteries", International Journal of Electrochemical Science, vol. 6, pp. 1550 - 1561, 2011.
[18]X. Yin, Q. Chen, D. Zeng, and W. Wang,"Phase diagram of the system", Calphad, vol. 35, pp. 463-472, 2011.
[19]X. H. Lu, L. Z. Zhang, Y. R. Wang, J. Shi, and G. Maurer,"Prediction of activity coefficients of electrolytes in aqueous solutions at high temperatures", Industrial & Engineering Chemistry Research, vol. 35, pp. 1777-1784, May 1996.
[20]陳世明,"空氣/氮氣氣氛對鐵-(鉻)合金氯化鈉沉積熱腐蝕之影響",機械研究所碩士論文,國立台灣科技大學,民國92年6月。

QR CODE